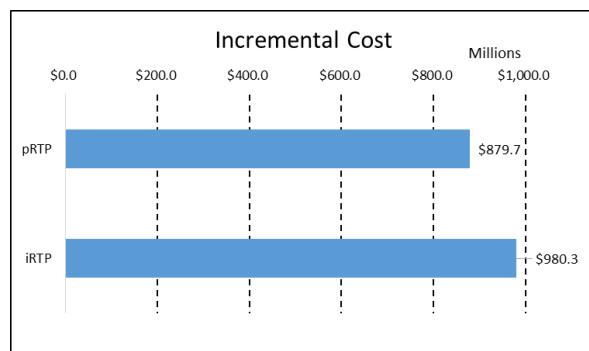


NTTG 2018-2019 DRAFT REGIONAL TRANSMISSION PLAN

December 28, 2018

I. EXECUTIVE SUMMARY	4
II. INTRODUCTION	5
A. Load Forecast.....	6
B. Resource submissions	6
C. Transmission Facilities and Service submissions.....	8
D. Transmission Needs Driven by Public Policy Requirements	11
E. Development of Initial Regional Transmission Plan.....	12
III. STUDY METHODOLOGY.....	12
A. Production-Cost Modeling	13
B. Power Flow Cases	14
C. System Performance Criteria.....	15
D. Simultaneous Wind Production in Wyoming.....	16
IV. STRESS CONDITIONED CASE STUDY RESULTS	17
A. NTTG Summer Peak Case	18
B. NTTG Winter Peak Case.....	20
C. High Eastbound flows on Idaho-Northwest Path.....	22
D. High westbound Idaho-Northwest Case	24
E. High Tot2/COI/PDCI Case	26
F. High Wyoming Wind Case	28
G. High Borah West Case	30
H. High NTTG Footprint Import Case.....	34
I. High Aeolus West and South Case	36
V. CHANGE CASE RESULTS.....	37
A. Heavy Summer Case results	43
B. Heavy Winter Case results	44
C. High Eastbound Idaho-Northwest Case results.....	45
D. High Westbound Idaho-Northwest case results	47
E. High Tot2/COI/PDCI Case results.....	48
F. High Wyoming Wind Case results.....	50
G. High Borah West Case results.....	51
H. High NTTG Footprint Import results	54
I. High Aeolus West and South Case results	55
J. 2029 Bridger Retirement Sensitivity	58
K. Interregional Transmission Projects	59

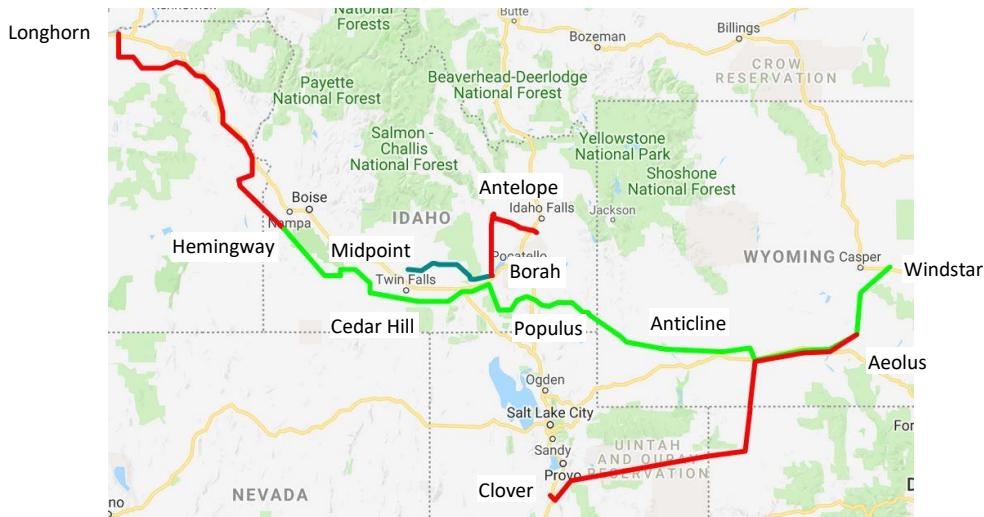

VI.	IMPACTS ON NEIGHBORING REGIONS	62
VII.	RELIABILITY CONCLUSIONS	62
VIII.	ECONOMIC EVALUATIONS.....	63
A.	Capital Related Cost Metric.....	63
B.	Energy Loss Metric	64
1.	Background and Method.....	64
2.	Results	64
C.	Reserve Metric.....	65
D.	Metric Analysis Conclusion – Incremental Cost Comparison	65
IX.	FINAL REGIONAL TRANSMISSION PLAN.....	66
X.	LESSONS LEARNED IN Q1 THROUGH Q4	67
A.	Study Plan changes	67
B.	Data submittals in Q1 and Q5	67
XI.	ROBUSTNESS SENSITIVITY STUDIES - Q5, Q6.....	67
XII.	PUBLIC POLICY CONSIDERATION - Q5, Q6.....	68
XIII.	COST ALLOCATION EVALUATION - Q5, Q6.....	68
APPENDIX A	PUBLIC POLICY REQUIREMENTS.....	69
APPENDIX B	2028 ADS CASE RESOURCE CHANGES.....	70
APPENDIX C	PATH FLOWS	71
APPENDIX D	PUBLIC POLICY CONSIDERATION STUDY.....	72

1 I. Executive Summary

2 The objective of the Northern Tier Transmission Group (“NTTG”) Regional Transmission Plan
 3 (“RTP”) is to evaluate, from a regional perspective, whether NTTG’s transmission needs may be
 4 satisfied on a regional or interregional basis more efficiently or cost effectively than through
 5 local planning processes. This report is the result of the assumptions outlined in the report. The
 6 consumers of the report must recognize this and factor it into their deliberations. NTTG’s 2018-
 7 2019 Regional Transmission Plan will be finalized and posted by the end of Quarter 8, December
 8 2019.

9 During the first year of the NTTG 2018-2019 biennial planning cycle, the Technical Work Group
 10 (“TWG”) of the NTTG Planning Committee evaluated the prior Regional Transmission Plan (pRTP)
 11 developed in the 2016-2017 planning cycle, the Initial Regional Transmission Plan (“IRTP”)¹ and
 12 33 Change Case² plans that included Non-Committed regional projects and Interregional
 13 Transmission Projects to determine a more efficient or cost effective plan. The complete study
 14 methodology can be found in [Section III](#). Through a reliability study process the TWG narrowed
 15 the number of potential Draft Regional Transmission Plan (“dRTP”) cases to two – the IRTP and
 16 the pRTP.

17 NTTG conducted an economic analysis of the IRTP and the pRTP after completing the reliability
 18 analysis. The economic analysis compared the annualized incremental costs of the two Change
 19 Cases. The annual incremental cost was computed as the sum of three metrics - the capital
 20 related costs, monetized energy loss benefit and monetized reserve benefit. Figure 1 below
 21 displays the results of the incremental cost analysis.



22 **Figure 1 – Summary of Incremental Costs for 2028 NTTG Study Cases**

23 ¹ The IRTP includes projects in the prior Regional Transmission Plan, projects in the Funders Local Transmission
 24 Plans, and accounts for future generation additions and deletions (e.g., announced coal retirements).

25 ² A Change Case is where one or more of the Alternative Projects is added to or replaces one or more Non-
 26 Committed Projects in the IRTP. The deletion or deferral of a Non-Committed Project in the IRTP without including
 27 an Alternative Project can also be a Change Case.

24 Based on the reliability and economic considerations for the transfers studied, the more
 25 efficient or cost-effective draft plan is the pRTP. Detailed pictorially, the dRTP³ is comprised of
 26 the following regionally significant Non-Committed Projects:

27
 28 Figure 2 - dRTP Projects
 29

30 II. Introduction

31 The NTTG 2018-2019 Draft Regional Transmission Plan was developed in accordance with the
 32 NTTG's Transmission Providers' Attachment K that included FERC Order 1000 regional and
 33 interregional transmission planning requirements⁴. The dRTP is a result of reliability and
 34 economic studies and activities outlined in the NTTG Biennial Study Plan for the 2018-2019
 35 Regional Planning Cycle⁵ and carried out by the NTTG Technical Work Group⁶. In Quarter 1 and
 36 again in Quarter 5, NTTG receives data from its Transmission Providers ("TPs") and stakeholders
 37 concerning forecasted firm obligations and commitments that the NTTG footprint transmission
 38 system is required to support. These include load forecast, resource, transmission service, and
 39 Public Policy Requirement submissions described in further detail below.

³ The dRTP is comprised of the same projects included in the pRTP.

⁴ [Link to Full Funder Attachment Ks](#)

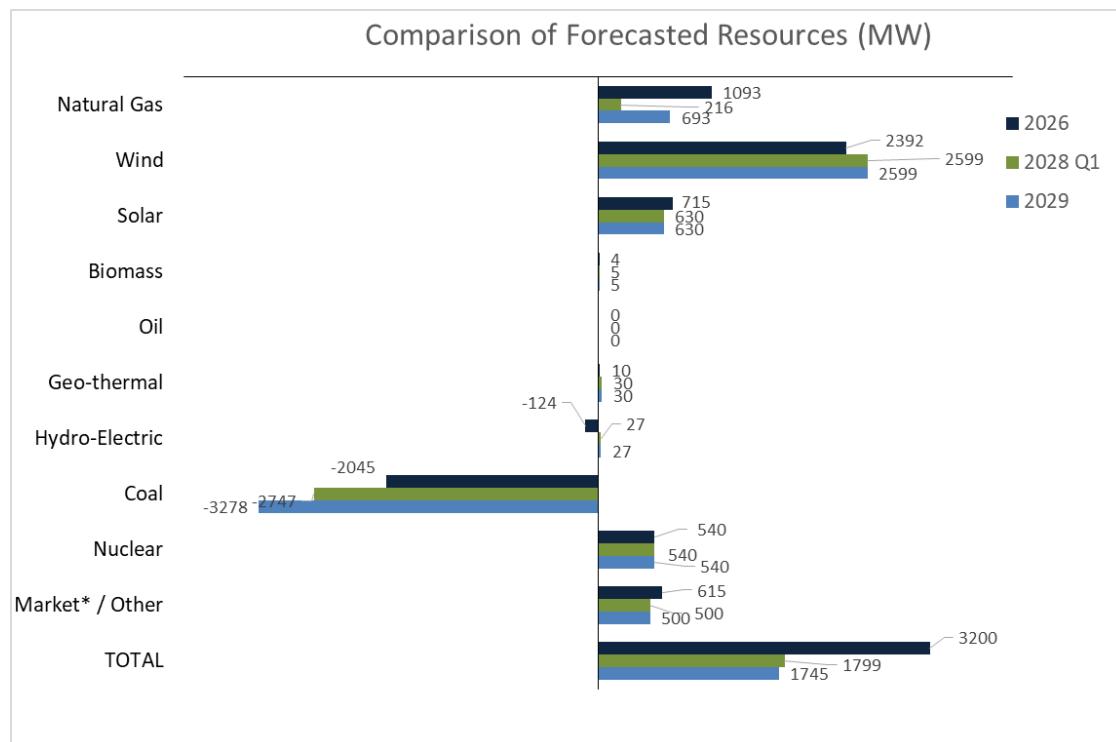
⁵ [Link to the 2018-2019 NTTG Study Plan](#)

⁶ This work group was established by the NTTG Planning Committee chair to create the study plan and perform the technical evaluations necessary to develop the Regional Transmission Plan. The TWG is comprised of the NTTG Planning Committee members or their representatives who have access to and expertise in power system power flow analysis or production cost modeling, are committed to participating in the entirety of the planning process (not just a single study or phase), and will ensure completion of those assignments in a cooperative and timely manner.

40 **A. Load Forecast**

41 The forecasted loads for Balancing Authority Areas internal to the NTTG footprint were provided
 42 in response to the Quarter 1 data request. These loads represent an average expected peak⁷,
 43 and are generally those in the participating load serving entities' official load forecasts (such as
 44 those in integrated resource plans) to serve network load and are similar to those provided to
 45 the Load and Resource Subcommittee of the WECC Planning Coordination Committee. Table 1
 46 summarizes the load forecast used in the 2018-2019 planning cycle.

SUBMITTED BY:	2017 Actual Peak Demand (MW)	2026 Summer Load Data Submitted in 2016-17 (MW)	2028 Summer Load Data Submitted in Q1 2018 (MW)	Difference (MW) 2026-2028
Idaho Power	3,806	4,346	4,412	66
NorthWestern	1,803	1,992	2,027	35
PacifiCorp	12,634**	13,044	13,386	342
Portland General	4,023	3,885	3,928	43
TOTAL*	22,266	23,267	23,753	486


* Loads for Deseret G&T and UAMPS are included in PacifiCorp East
 ** 2016 July Peak Demand

47 **Table 1: January 2018 Data Submittal – Load Comparison**48 **B. Resource submissions**

49 Resources provided in response to the Quarter 1 data requests are incremental to existing
 50 resources within the NTTG footprint and are summarized in Figure 3 and Table 2 below.

⁷ A peak condition that has an equal probability to occur or not in a given year, sometimes referred as a 50 percent exceedance level or a 1 in 2 peak. A 1 in 5 peak would have a 20 percent chance of exceedance.

51

52

Figure 3: Comparison of Forecasted Resources

State	Resource Additions (MW)
Arizona ⁸	-414
California	0
Colorado ⁸	-82
Idaho	588
Montana	573
Oregon	-391
Utah	452
Washington	108
Wyoming	727 ⁹

53

Table 2: Location of 2028 Forecasted Resources

⁸ Reflects PacifiCorp's retirement of Cholla 4 and Craig 1, which are coal resources outside the NTTG footprint.

⁹ Prior to the Q1 data deadline PacifiCorp submitted 1100 MW for its Energy Vision 2020 wind resource acquisition. During the review of the submittals and reviewing PacifiCorp's 2017 IRP Update it was apparent that the Energy Vision 2020 acquisition had materially changed to 1311 MW. To align the NTTG's studies with PacifiCorp's current plan, a revised data submittal was made by PacifiCorp and incorporated into this document.

54 As shown in Figure 3, the total resource forecast of 1799 MW submitted this cycle is reduced (-
 55 1401 MW or -43.8%) from the 3200 MW forecast in 2026.

56 Coal retirements submitted in Q1 of 2018 are listed in Table 3 below.

Coal Unit	Retirement Date ¹⁰	Study Treatment
Naughton 3	12/2018	Retired
Valmy 1	12/2019	Retired
Boardman	12/2020	Retired
Cholla 4¹¹	12/2020	Retired
Colstrip 1 & 2	7/2022	Retired
Valmy 2	12/2025	Retired
Craig 1¹¹	12/2025	Retired
Dave Johnson 1, 2, 3, 4	12/2027	Retired
Bridger 1	12/2028	On-line, Retired in Sensitivity case

57 **Table 3 – Planned Coal Retirements to be studied in the 2018-2019 planning cycle¹²**

58

59 C. Transmission Facilities and Service submissions

60 Listed below in Table 4 are the regional transmission projects that were submitted in Quarter 1.
 61 The project types are the following: prior Regional Transmission Plan (pRTP), Full Funder Local
 62 Transmission Plan (LTP), Sponsored Project, unsponsored Project, or Merchant Transmission
 63 Developer. The Initial Regional Transmission Plan was derived from projects included in the
 64 prior Regional Transmission Plan and projects included in the Full Funders' local transmission
 65 plans.

66

¹⁰ Units are assumed to retire at the end of the stated month.

¹¹ Reflects PacifiCorp's retirement of coal retirements outside the NTTG footprint

¹² PacifiCorp currently is planning to retire Naughton 1 and 2 after 12/31/2029, i.e. at the beginning of 2030-31 Planning Cycle, so those retirements will be considered by NTTG during the next Planning Cycle.

67

MARCH 2018 DATA SUBMITTAL – TRANSMISSION ADDITIONS BY 2028

Submitter	From	To	Voltage	Circuit	Type	Regionally Significant	Committed	Projects (In-service Year)
Idaho Power	Hemingway	Longhorn	500 kV	1	LTP & pRTP	Yes	No	B2H Project (2026)
	Hemingway	Bowmont	230 kV	2	LTP	Yes	No	New Line - associated with Boardman to Hemingway (2026)
	Bowmont	Hubbard	230 kV	1	LTP	Yes	No	New Line - associated with Boardman to Hemingway (2026)
	Hubbard	Cloverdale	230 kV	1	LTP	No	No	New Line (2021)
	Midpoint	Hemingway	500 kV	2	LTP	Yes	No	Gateway West Segment #8 (joint with PacifiCorp East) (2024)
	Cedar Hill	Hemingway	500 kV	1	LTP & pRTP	Yes	No	Gateway West Segment #9 (joint with PacifiCorp East) (2024)
	Cedar Hill	Midpoint	500 kV	1	LTP	Yes	No	Gateway West Segment #10 (2024)
	Midpoint	Borah	500 kV	1	LTP & pRTP	Yes	No	(convert existing from 345 kV operation) (2024)
	Ketchum	Wood River	138 kV	2	LTP	No	No	New Line (2020)
	Willis	Star	138 kV	1	LTP	No	No	New Line (2019)
Enbridge	SE Alberta		DC	1	LTP	Yes	No	MATL 600 MW Back to Back DC Converter (2024)
PacifiCorp East	Aeolus	Clover	500 kV	1	LTP & pRTP	Yes	No	Gateway South Project – Segment #2 (2024)
	Aeolus	Anticline	500 kV	1	LTP & pRTP	Yes	No	Gateway West Segments 2&3 (2020)
	Anticline	Jim Bridger	500 kV	1	LTP & pRTP	Yes	No	345/500 kV Tie (2020)
	Anticline	Populus	500 kV	1	LTP & pRTP	Yes	No	Gateway West Segment #4 (2024)
	Populus	Borah	500 kV	1	LTP	Yes	No	Gateway West Segment #5 (2024)
	Populus	Cedar Hill	500 kV	1	LTP & pRTP	Yes	No	Gateway West Segment #7 (2024)
	Antelope	Goshen	345 kV	1	LTP	Yes	No	Nuclear Resource Integration (2026)
	Antelope	Borah	345 kV	1	LTP	Yes	No	Nuclear Resource Integration (2026)
	Windstar	Aeolus	230 kV	1	LTP & pRTP	Yes	No	Gateway West Segment #1W (2024)
	Oquirrh	Terminal	345 kV	2	LTP	Yes	Yes	Gateway Central
PacifiCorp West	Cedar Hill	Hemingway	500 kV	1	LTP	Yes	No	Gateway West Segment #9 (joint with Idaho Power) (2024)
	Shirley Basin	Standpipe	230 kV	1	LTP	Yes	No	Local Wind Integration (2020)
Portland General	Wallula	McNary	230 kV	2	LTP	Yes	Yes	Gateway West Segment A (2020)
	Blue Lake	Gresham	230 kV	1	LTP	No	Yes	New Line (2018)
	Blue Lake	Troutdale	230 kV	1	LTP	No	Yes	Rebuild (2018)
	Blue Lake	Troutdale	230 kV	2	LTP	No	Yes	New Line (2018)
	Horizon	Springville Jct	230 kV	1	LTP	No	Yes	New Line (Trojan-St Marys-Horizon) (2020)
	Horizon	Harborton	230 kV	1	LTP	No	Yes	New Line (re-terminates Horizon Line) (2020)
	Trojan	Harborton	230 kV	1	LTP	No	Yes	Re-termination to Harborton (2020)
	St Marys	Harborton	230 kV	1	LTP	No	Yes	Re-termination to Harborton (2020)
	Rivergate	Harborton	230 kV	1	LTP	No	Yes	Re-termination to Harborton (2020)
	Trojan	Harborton	230 kV	2	LTP	No	Yes	Re-termination to Harborton (2020)
			115 kV	1	LTP	No	Yes	Various Load Service Additions (2019-2024)

68

Table 4 – New Transmission Projects

¹³ Regionally significant transmission projects are generally those that effect transfer capability between areas of NTTG. Projects that are mainly for local load service are not regionally significant. Projects that are not regionally significant will be placed into all change cases and not tested for impact on the Regional Transmission Plan. The facilities submitted in the LTP's will be removed in the Null Case

69 Transmission Service Obligations: Listed below, in Table 5, are the transmission obligations that
 70 were submitted for the 2018-2019 planning cycle.

Submitted by	MW ¹⁴	Start Date	POR	POD
Idaho Power	500/200	2021	Northwest	IPCo
	250/550	2022	LGBP	BPASEID

71 **Table 5 – Transmission Service Obligations**

72 Available Transfer Capability (ATC): Listed in Table 6 is a summary of the transmission path
 73 ratings and Available Transfer Capability (ATC) on the designated transmission path(s).

Path Name	Existing Path Rating (MW)	Available Transfer Capability(2018)
8 – Montana to Northwest	E-W: 2200 W-E: 1350	E-W: 627* W-E: 666**
14 - Idaho to Northwest	W-E: 1200 E-W: 2175	W-E: 0 E-W: 1489
16 – Idaho - Sierra	N-S: 500 S-N: 360	N-S: 448 S-N: 0
17 – Borah West	E-W: 2557 W-E: 1600	E-W: 26* E-W: 0** W-E: 1350
18 – Idaho to Montana	N-S: 383 S-N: 256	N-S: 0 S-N: 131
19 – Bridger West	E-W: 2400 MW W-E: 1266 MW	E-W: 86* W-E: 250* E-W: 0** W-E: 0**
20 – Path C	N-S: 1600 S-N: 1250	N-S: 0 S-N: 0
37 - TOT 4A	NE-SW: 950	NE-SW: 0 SW-NE: 0
38 - TOT 4B	SE-NW: 829	SE-NW: 0 NW-SE: 0
75 - Hemingway-Summer Lake	E-W: 1500 W-E: 550	E-W: 150* E-W: 0** W-E: 0**
80 – Montana Southeast	N-S: 600 S-N: 600	N-S: 600 S-N: 385
83 – MATL	N-S: 300 S-N: 300	N-S: 300 S-N: 0

74 **Path 8 Notes:**

75 * This includes 184 MW owned by BPA which ties into the same Garrison substation as some of the other
 76 capacity.

77 ** This number is the ATC on the NorthWestern or Eastern side of the meter points. West of the meter
 78 points belongs to BPA and Avista and will have different values.

79 **Path 17, 19 and 75 Notes:**

80 * IPCo Share.

81 ** PAC Share

82 **Table 6– Transmission Path Capacity and Available Transfer Capability**

83 Interregional Transmission Projects: Table 7 below provides a list of the Interregional
 84 Transmission Projects (ITPs) received in Q1.

14 Summer/Winter service requirements

SUMMARY OF Q1-2018 INTERREGIONAL PROJECTS SUBMITTED TO NTTG						
Project Name	Company	Relevant Planning Region(s)	Termination From	Termination to	Status	In Service Date
Cross-Tie Transmission Project	TransCanyon, LLC	NTTG, WestConnect	Clover, UT	Robinson Summit, NV	Conceptual	2024
SWIP-North ¹⁵	Great Basin Transmission LLC	CAISO ¹⁶ , NTTG, WestConnect	Midpoint, ID	Robinson Summit, NV	Permitted	2021
TransWest Express Transmission DC/AC Project ¹⁸	TransWest Express, LLC	CAISO, NTTG, WestConnect	Rawlins, WY	Boulder City, NV	Conceptual	2022
TransWest Express Transmission DC Project ¹⁷	TransWest Express, LLC	CAISO, NTTG, WestConnect	Rawlins, WY	Boulder City, NV	Conceptual	2022

85

Table 7 – Interregional Transmission Projects

86

D. Transmission Needs Driven by Public Policy Requirements

87
88

Public Policy Requirements are those requirements that are established by local, state, or federal laws or regulations.

89
90
91
92
93

Local transmission needs driven by Public Policy Requirements are included in the NTTG Initial Regional Plan¹⁸ through the Local Transmission Plans of the NTTG Transmission Providers and included in NTTG's planning process. Additionally, during Quarter 1, stakeholders may submit regional transmission needs and associated facilities driven by Public Policy Requirements to be evaluated as part of the preparation of the Draft Regional Transmission Plan.

94
95
96

The selection process and criteria for regional projects meeting transmission needs driven by Public Policy Requirements are the same as those used for any other regional project chosen for the Regional Transmission Plan.

97
98
99
100
101

During this planning cycle, no additional transmission needs, beyond those submitted by the transmission providers, were submitted to satisfy Public Policy Requirements. A full listing of applicable Public Policy Requirements for the NTTG footprint is included in [Appendix A](#). The following Renewable Portfolio Standard ("RPS") values were used in the modeling for the 2018-2019 study:

¹⁵ The SWIP-North project submitted by Great Basin Transmission (GBT) requires a new physical connection at Robinson Summit, at the southern end of the Project. To transmit power beyond the Project, ~1,000 MW of capacity rights on the already in-service ON Line Project from Robinson Summit to Harry Allen 500 kV, as well as, completion of CAISO's Harry Allen to Eldorado Project in 2020, those GBT capacity rights will provide a CAISO access to SWIP-North.

¹⁶ CAISO has volunteered to participate in the studies and accept cost allocation.

¹⁷ Two Alternatives were submitted by TransWest Express, 1) a DC Line the entire Length, and 2) a DC line from Wyoming to the Intermountain Power Project area then an AC line to Nevada.

¹⁸ See Attachment K, Local Planning process

	ADS 2028 case
California	33%
Oregon	27%
Washington	15%
Idaho	-
Montana	15%
Wyoming	-
Utah	20%
Nevada	25%
Arizona	25%
Colorado	30%
New Mexico	20%

102

103

Table 8 – RPS Assumptions in Production Cost Model Dataset¹⁹

104

E. Development of Initial Regional Transmission Plan

105

The planning process started by developing the Initial Regional Transmission Plan through a bottom up approach by aggregating the Funding TPs' local transmission plans into a single regional transmission plan. Next the IRTP Non-Committed projects within the NTTG geographical area were analyzed through Change Case plans to determine whether Alternative Projects could be added or substituted and/or one or more Non-Committed projects could be deferred to yield a regional transmission plan that would be more efficient or cost effective than the IRTP. It is the result of this analysis that formulated the dRTP presented herein. This dRTP document discusses in detail the activities and studies completed and how the dRTP was developed.

114

III. Study Methodology

115

To determine the more efficient or cost-effective transmission plan that would become the dRTP, both reliability and economic studies were performed in accordance with the 2018-2019 Study Plan. The reliability studies utilized production cost modeling and power flow studies. The production cost model results (the base case input data derived from the WECC 2028 Anchor DataSet (ADS) case²⁰ were used to identify nine stressed hours. After review of the cases, eight were subjected to reliability analysis using a power flow model. The input and output data for these selected hours were transferred, using the round-trip process, from the production cost model (i.e., GridView) to a power flow model (i.e., PowerWorld) to perform the technical reliability analysis. The economic studies that were performed next utilized the Attachment K's

¹⁹ The ADS case was developed prior to California passing Senate Bill 100.

²⁰ See Appendix B that lists the resource additions and removals made to the production cost model and power flow Change Cases.

124 three metrics (i.e., capital related costs, energy losses, and reserves) to analyze those Change
125 Case plans that were reliable to further determine the cost effectiveness of the NTTG
126 transmission plan. The reliability study process and the economic evaluations will be described
127 in more detail below.

128 **A. Production-Cost Modeling**

129 GridView²¹ production cost software was used to look at 8760 hours of data to determine
130 stressed conditions within the NTTG footprint. The production cost dataset representing the
131 year 2028 was obtained from the 2028 ADS case of the Western Electricity Coordinating Council
132 ("WECC"). This case included a representation of the load, generation and transmission
133 topology of the WECC interconnection-wide transmission system ten years into the future. The
134 2028 ADS case was released on July 1st, 2018. Members of the TWG reviewed the loads,
135 resources, and transmission data for their transmission planning area to ensure that the
136 representations in this case were reasonably close to the data they had submitted in the first
137 Quarter ("Q1") of the biennial cycle. TWG identified the need to incorporate a significant
138 number of corrections prior to use by NTTG. In early September, NTTG shared these changes
139 with the other Regional Planning entities and WECC for inclusion in their future studies. The
140 TWG then agreed to use this modified ADS case in creating the stressed cases discussed below.

141 TWG determined that there were eight stressed conditions which impact the NTTG area that
142 should be studied:

- 143 • high NTTG summer peak;
- 144 • high NTTG winter peak;
- 145 • high eastbound Idaho-Northwest flows;
- 146 • ~~high southern Idaho-Northwest export (Idaho-Northwest westbound);~~²²
- 147 • high NE-SE (Path Tot2)/COI/PDCI flows;
- 148 • high Wyoming Wind production;
- 149 • high Borah West flows;
- 150 • high NTTG footprint import; and;
- 151 • high Aeolus West and South flows.

152 After running all 8760 hours using the GridView production-cost program, the data was analyzed
153 and the hours representative of the stressed conditions were identified. The hours are shown in
154 Table 9 below.

²¹ GridView is a registered ABB product

²² Case dropped from study after review of the exported case.

Stressed Condition	Date	Hour	TWG Label
Max. NTTG Summer Peak	July 19, 2028	16:00	A
Max. NTTG Winter Peak	December 5, 2028	19:00	B
High eastbound Idaho-Northwest flows	June 3, 2028	2:00	C
High westbound Idaho-Northwest flows²³	October 11, 2028	11:00	D
High Tot2/COI/PDCI Flows	May 16, 2028	19:00	E
High Wyoming Wind	February 24, 2028	Midnight	F
High Borah West Flows	December 11, 2028	2:00	G
High NTTG Footprint Import	July 27, 2028	14:00	H
High Aeolus West and South flows	June 3, 2028	18:00	I

155
156

**Table 9 – Hours Selected from 2028 WECC ADS Case to
Represent Different NTTG System Stresses**

157

B. Power Flow Cases

158 The next step in the process was developing the power flow stressed condition cases by
 159 converting (i.e., a “round-trip process”) the production cost model for the above hours into the
 160 PowerWorld power flow cases. It should be noted that this conversion process has improved
 161 with each biennial cycle from months to weeks to now a few hours, once the initial dataset has
 162 been adjusted.

163 The TWG determined that the power flow model loads extracted from the production cost
 164 model did not stress the transmission system as much as historical conditions would suggest.
 165 Further exploration found that the production cost database uses a 1 in 2 load forecast⁷ and
 166 when extracting a single hour from the production cost model to the power flow model, this
 167 single hour may not represent a coincident peak hour²⁴ between the balancing areas as has
 168 been experienced in the past. TWG recognized that these differences result in lower than
 169 expected peak loads in the extracted power flow for a number of the balancing areas within
 170 NTTG. To better reflect possible highly stressed conditions for the selected peak loads within
 171 the NTTG footprint, the balancing area loads were adjusted to get peak loads that represent 1 in
 172 5⁷ to 1 in 10 peak load condition. These load adjustments were only applied to the summer and
 173 winter peak cases.

²³The flow pattern extracted for this case did not meet the objectives for this case, so further study of the case was dropped.

²⁴This refers to demand among a group of customers that coincides with total demand on the system at that time. Residential demand at a time of peak industrial demand can be referred to as coincident peak demand, as can a particular plant's demand at a time of peak demand across the whole system.

			Pacificorp		
	Idaho	Northwestern	PACW	PACE	Portland
Non-Coincident Peak	4259	2027	3769	10387	4006
2028 Coincident Peak	4190	1936	3395	10387	2958
Coincident Peak %	98.4%	95.5%	90.1%	100.0%	73.8%
Relative Scaling Factors					
1 in 2	100%	100%	100%	100%	100%
1 in 5	102.7%	100%	102.0%	102.0%	103.2%
1 in 10	103.6%	100%	104.6%	104.6%	104.9%
1 in 5 Target MW	4375	2027	3844	10595	4133
Target/2028 Peak	104.4%	104.5%	113.2%	102.0%	139.7%
Applied	105%	105%	113%	102%	125%

174

Table 10 – Summer Peak Hour Adjustment

			Pacificorp		
	Idaho	Northwestern	PACW	PACE	Portland
Non-Coincident Peak	2901	1872	3957	8083	3830
2028 Coincident Peak	2572	1821	3624	7984	3777
Coincident Peak %	88.7%	97.3%	91.6%	98.8%	98.6%
Relative Scaling Factors					
1 in 2	100%	100%	100%	100%	100%
1 in 5	102.7%	100%	102.0%	102.0%	105.0%
1 in 10	103.7%	100%	104.6%	104.6%	107.8%
1 in 5 Target MW	2978	1872	4036	8245	4022
Target/2028 Peak	115.8%	102.8%	111.4%	103.3%	106.5%
Applied	113%	105%	115%	103.5%	109%

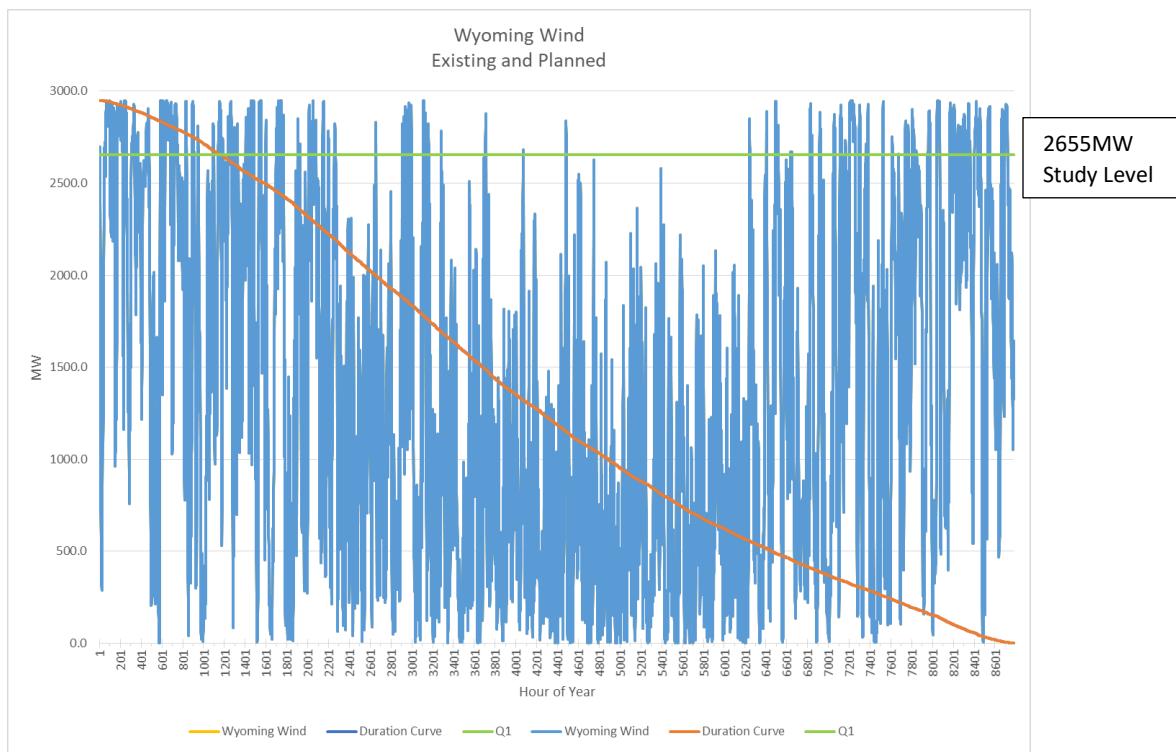
175

Table 11 – Winter Peak Hour Adjustment

176 Each of the stressed cases was then reviewed by the TWG to ensure that the case met steady
 177 state system performance criteria (no voltage issues or thermal overloads). Bubble diagrams
 178 showing the inter-area flows for each of the stressed cases are included in the result sections
 179 below.

180 **C. System Performance Criteria**

181 The details of the system performance criteria can be found in the Study Plan ([see Study Plan](#)
 182 [footnote 10](#)). An abbreviated summary of the NERC reliability criteria:


- 183 • Lines and transformers must not exceed their normal thermal ratings during steady
 184 state conditions;
- 185 • Line and transformers must not exceed their emergency thermal ratings post
 186 contingency;
- 187 • Bus voltages must remain within the following ranges:
 - 188 ○ For steady-state conditions, bus voltages must be between 95% and 105% for
 189 buses 345 kV and below and between 100% and 110% for buses 500 kV and
 190 above.

191 ○ Post contingency voltages must be > 90% and < 110% for buses 345 kV and
 192 below and be greater than 95% and less than 115% for buses 500 kV and above.

193 For dynamic studies, the criteria are based on TPL-001-WECC-CRT-3, following fault clearing, the
 194 voltage shall recover to 80% of the pre-contingency voltage within 20 seconds for each BES bus
 195 serving load and shall not dip below 70% for more than 30 cycles nor remain below 80% for
 196 more than 2 seconds once the voltage has recovered above 80% post fault. All oscillations shall
 197 be positively damped within 30 seconds or the contingency will be considered unstable.

198 D. Simultaneous Wind Production in Wyoming

199 Figure 4 shows a peak duration curve of those existing and planned resources based on data
 200 developed by National Renewable Energy Laboratory (NREL) for the 2009 weather patterns.
 201 2009 is the year selected by WECC to base all of the hourly profiles for load, average hydro
 202 conditions and fixed/non-dispatchable generation. TWG reviewed the duration curve in Figure 4
 203 and selected a study level of 2655 MW or approximately 90% of the peak capacity of the existing
 204 and forecasted wind resources to be installed. Based on the NREL models, production would
 205 exceed this level about 1020 hours or over a month. The time of year, time of day and the
 206 associated load level of the high wind scenario will also be reflective of the most likely
 207 occurrence of the high wind scenario as indicated in Figure 4.

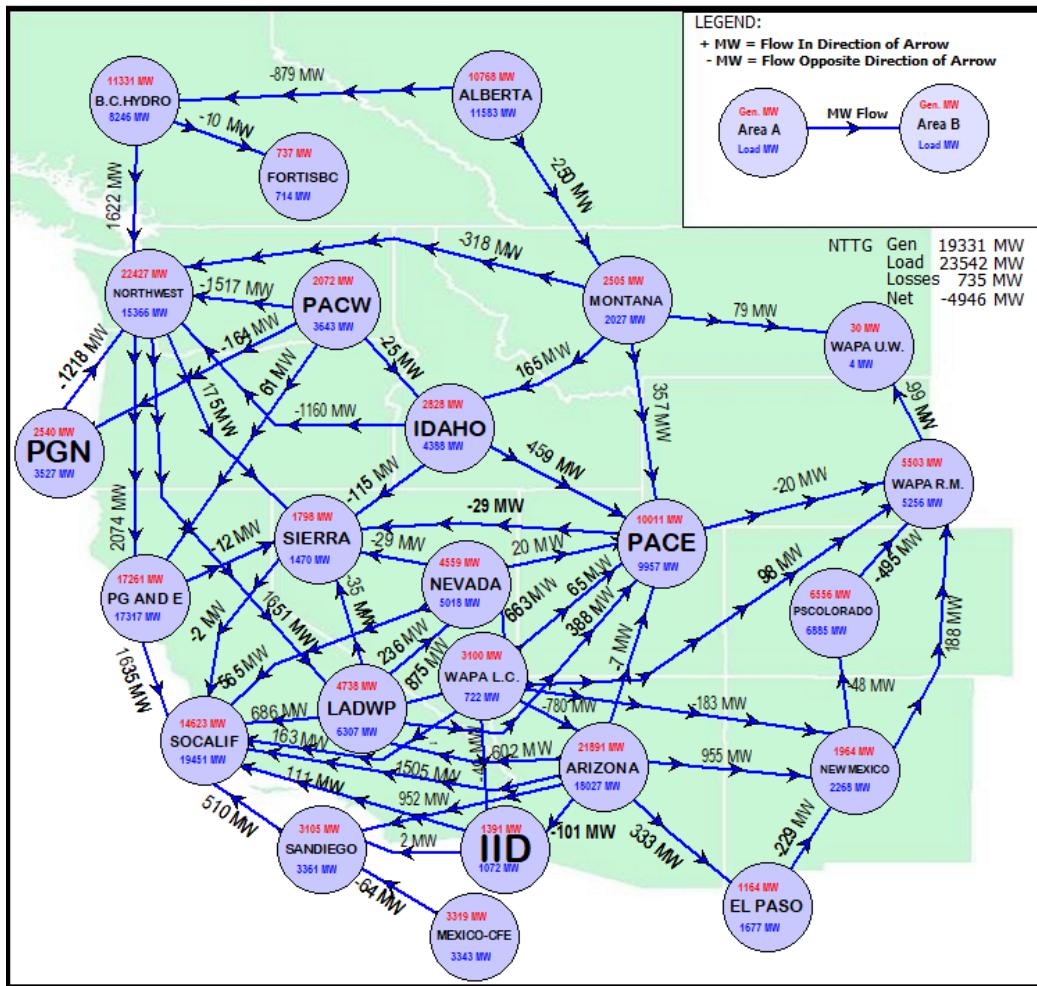
208
 209 Figure 4: Chronologic and Duration curve of forecasted Wyoming wind production for 2028

210 **IV. Stress Conditioned Case Study Results**

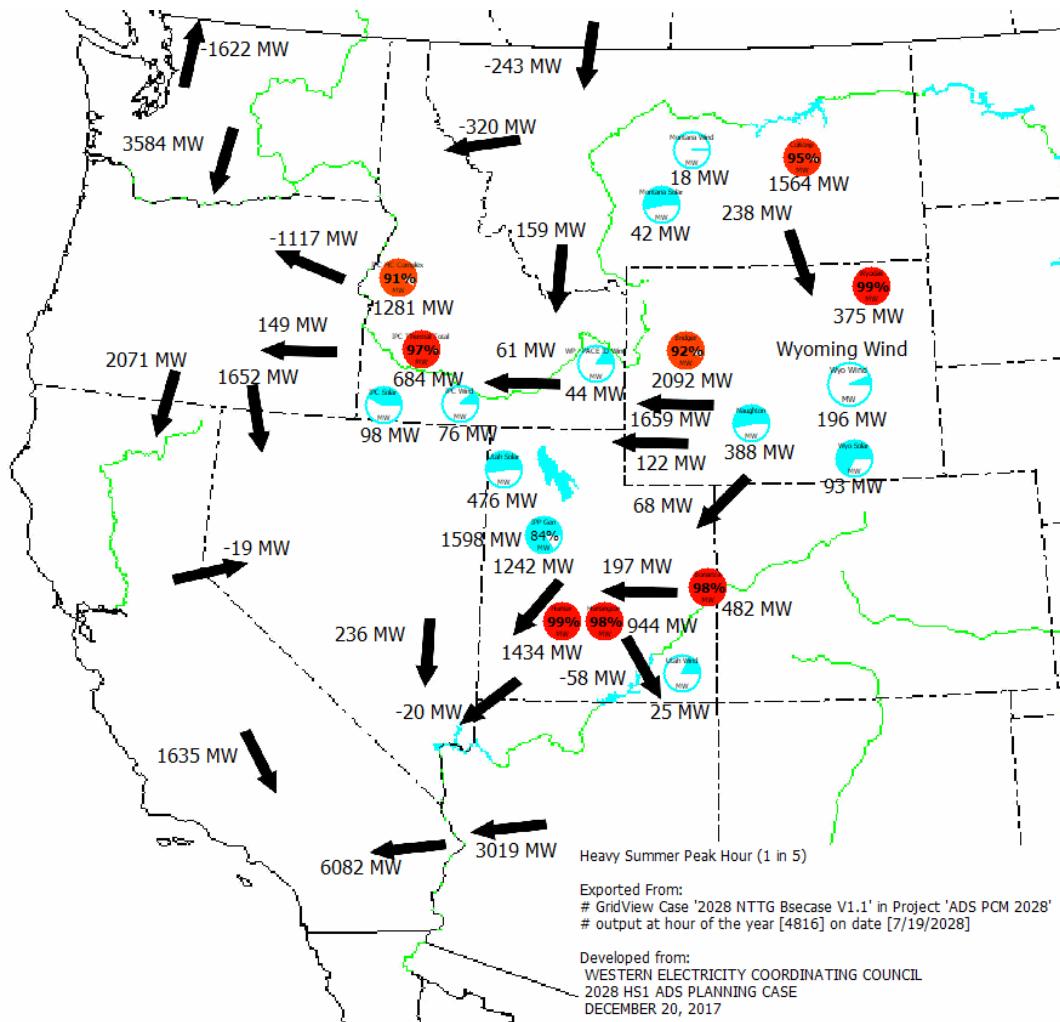
211 After analyzing the steady-state performance of each of the nine stress conditioned cases, the
 212 TWG performed a rigorous contingency analysis on eight of the nine cases²⁵. This contingency
 213 analysis consisted of over 445 single contingencies and 36 credible double contingencies, to
 214 determine if each contingency meets the system performance criteria. If there were reported
 215 reliability violations by the power flow program, TWG determined if these violations were
 216 legitimate and needed mitigation to correct the violation or if modeling problems (e.g.,
 217 corrections to the modeled contingency actions) caused the reliability violation. For the
 218 legitimate violations, TWG determined what additional facilities would be needed to meet the
 219 criteria and adjust the RTP to include the additional facilities. If no violations were found, then
 220 the facilities in the RTP are deemed adequate for serving the NTTG loads and resources in the
 221 year 2028. Table 12 provides a summary of the NTTG footprint L&R balance for each of the
 222 conditions studied.

223 The Null Case topology indicates for cases E, F, G and I, that system performance is inadequate
 224 without transmission system additions by 2028 to meet NTTG's requirements.

		Case A	Case B	Case C	Case D	Case E	Case F	Case G	Case H	Case I
Idaho	Gen	2828	2373	1367	1257	1909	1178	943	2493	1837
	Load	4388	2978	2478	2053	2755	1777	1926	3720	2594
	Losses	150	83	157	61	126	151	152	106	139
	Import/Export	-1710	-688	-1268	-857	-972	-750	-1136	-1333	-896
Montana	Gen	2505	2446	1931	1429	3419	2297	2125	2243	2611
	Load	2027	1870	1071	1374	1302	1304	1385	1564	1310
	Losses	109	68	60	58	118	76	63	60	67
	Import/Export	369	507	800	-3	1999	917	677	620	1234
PACE	Gen	10011	10013	4619	9986	8755	9727	8719	7900	7742
	Load	9957	8243	4876	6137	6547	4606	4608	8825	6142
	Losses	337	331	176	425	414	415	382	255	365
	Import/Export	-282	1438	-433	3425	1794	4707	3729	-1181	1236
PACW	Gen	2072	1759	848	1205	1262	1058	1016	1438	819
	Load	3643	4036	1496	2618	2307	2148	2350	3466	2110
	Losses	72	87	57	54	67	57	62	65	50
	Import/Export	-1643	-2364	-705	-1466	-1112	-1147	-1397	-2093	-1342
PGN	Gen	2540	2084	932	1408	1044	1624	1879	1675	866
	Load	3527	4022	1664	2587	2303	2383	2213	3297	2130
	Losses	67	63	34	37	40	32	36	44	33
	Import/Export	-1054	-2001	-767	-1216	-1300	-792	-370	-1666	-1298
NTTG	Gen	19957	18676	9697	15286	16389	15883	14682	15750	13875
	Load	23542	21149	11586	14768	15214	12218	12482	20872	14287
	Losses	735	633	484	635	766	731	696	530	655
	Import/Export	-4946	-3733	-2662	-407	-191	2343	972	-6267	-1624


226 **Table 12: L&R Balance summary of selected cases**

227 The results of each of the stressed cases are discussed below:


228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 132

228 **A. NTTG Summer Peak Case**

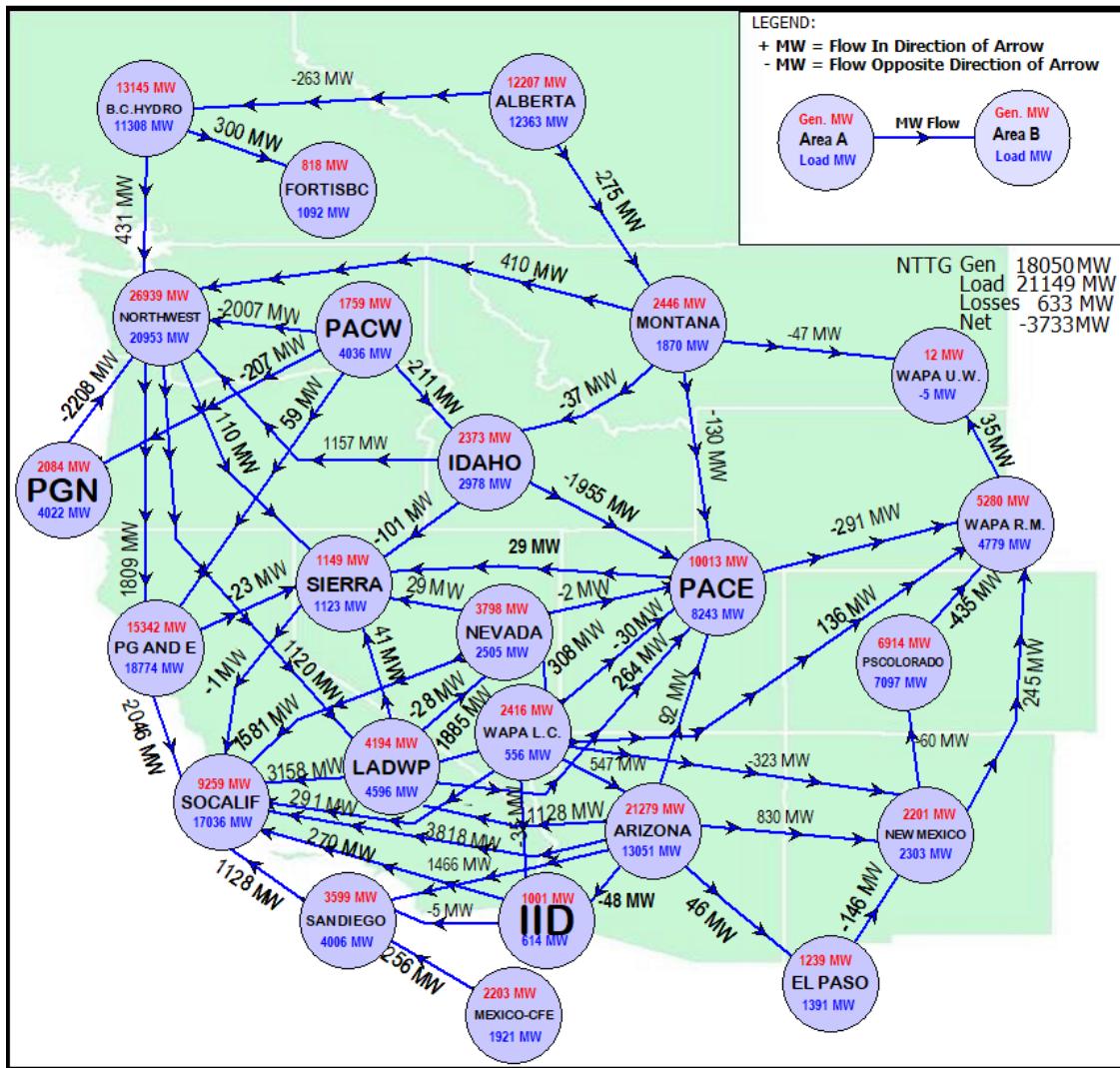
229 This case has an NTTG summer peak load of 23,542 MW with 19,331 MW of generation. The
 230 sum of the NTTG boundary flows in the case is approximated by taking the difference between
 231 generation and load, which equated to 4,946 MW (import). A bubble diagram of the case is
 232 shown below.

233
 234 **Figure 5 - Tie-line flows for Summer Peak Case**
 235 (July 19, 2028 Hour 16 - NTTG Case A)

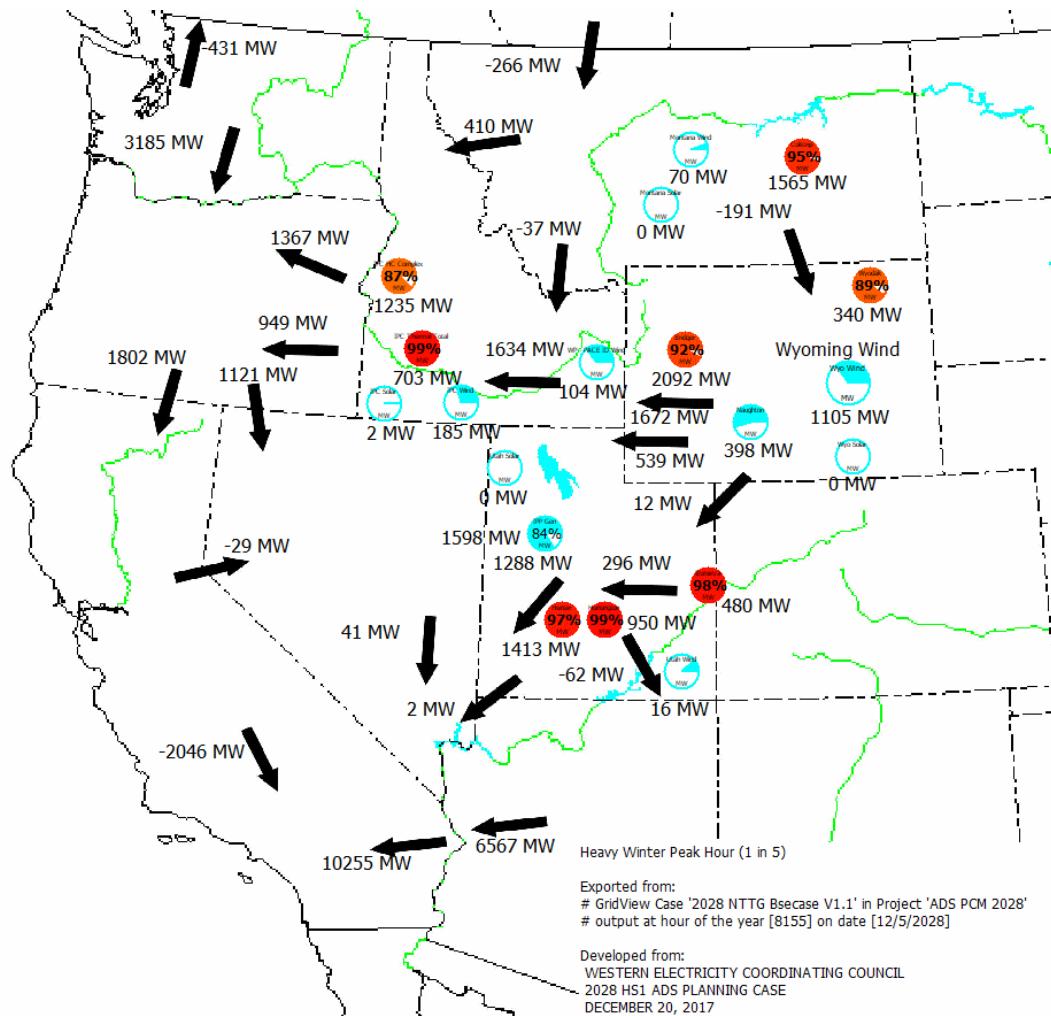
236

237

238


**Figure 6 – Other flows for Summer Peak Case
 (July 19, 2028 Hour 16 - NTTG Case A)**

239 This summer peak case represents a 1 in 5 NTTG footprint peak load. The original exported case
 240 from the PCM was a 1 in 2 condition based on the assumptions of that dataset. Data was
 241 collected from each data submitter to adjust the load forecast from 1 in 2 to the 1 in 5
 242 condition. Each area's load was independently adjusted to achieve the 1 in 5 condition.


243 In this case, the both the pRTP and the IRTP performed reasonably well with a few local areas
 244 having known existing issues that have not risen to the level of justifying expenditures to resolve
 245 them.

246 **B. NTTG Winter Peak Case**

247 The NTTG winter peak load in this case is 21,149 MW with a total of 18,050 MW of generation.
 248 The difference of generation and load approximates the boundary flow which is equal to 3,733
 249 MW (import). A few local system violations occur in the pRTP case. It is apparent that the
 250 heavy winter condition is less stressful than the heavy summer condition, as very few additional
 251 violations occur in the Null case compared to the IRTP case.

252
 253 **Figure 7 - Tie-line flows for Winter Peak Case**
 254 (Dec 5, 2028 Hour 19 - NTTG Case B)

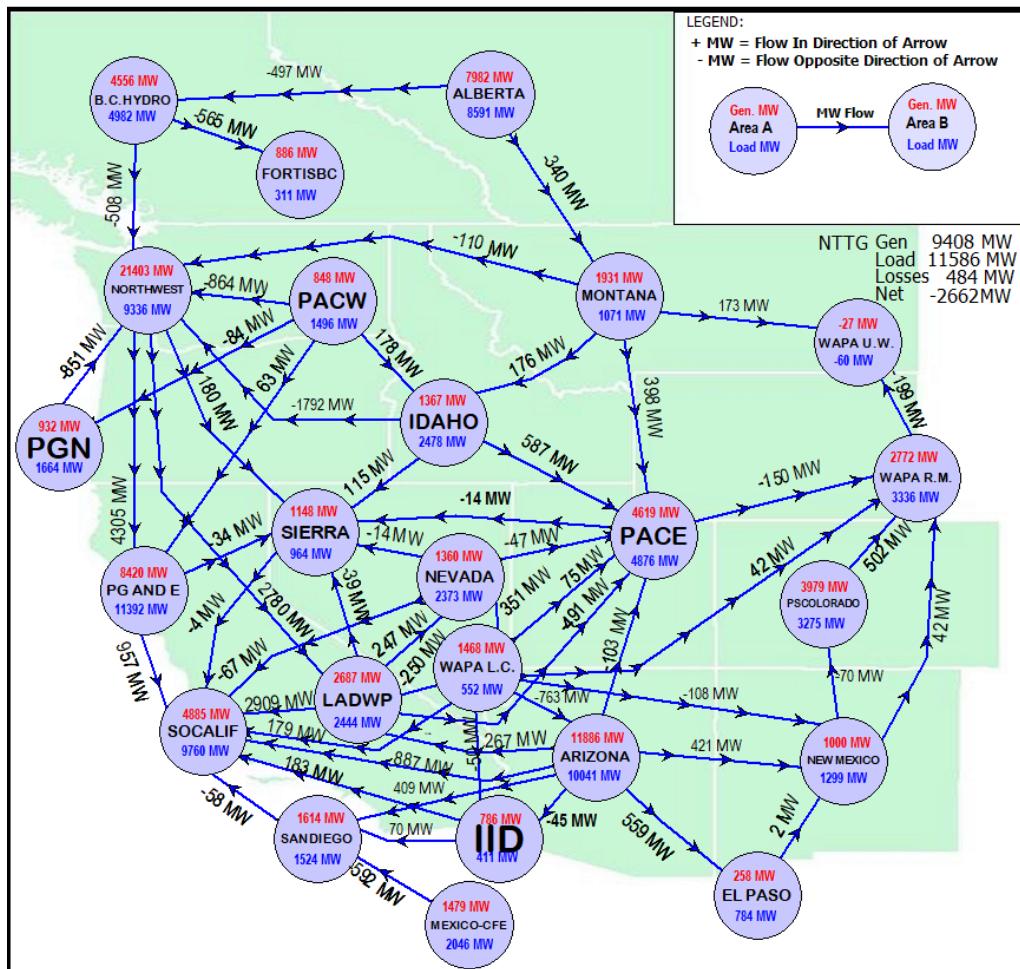
255

256

257

258

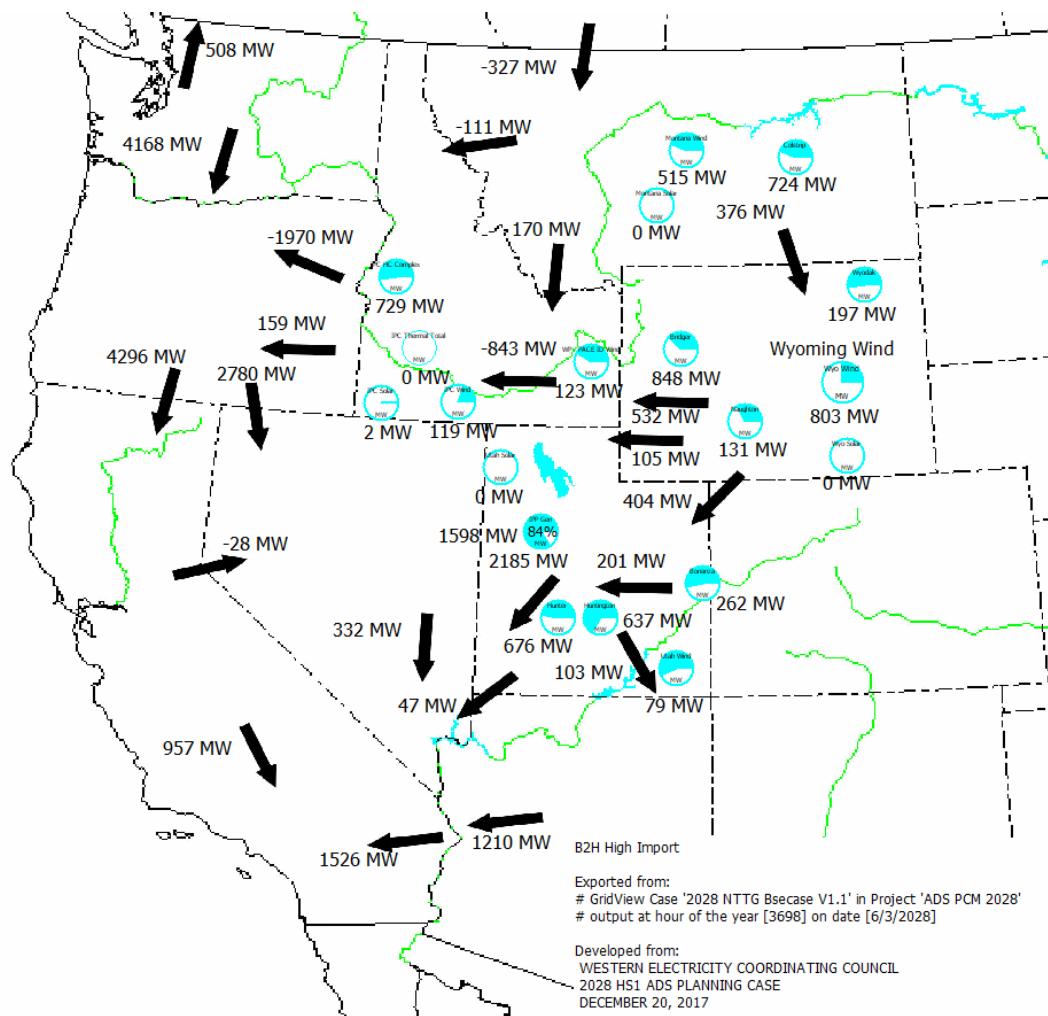
259


**Figure 8 - Other flows for Winter Peak Case
(Dec 5, 2028 Hour 19 - NTTG Case B)**

Similar to the Summer Peak case (Case A), the exported winter peak case was adjusted to reflect a 1 in 5 condition.

260

C. High Eastbound flows on Idaho-Northwest Path

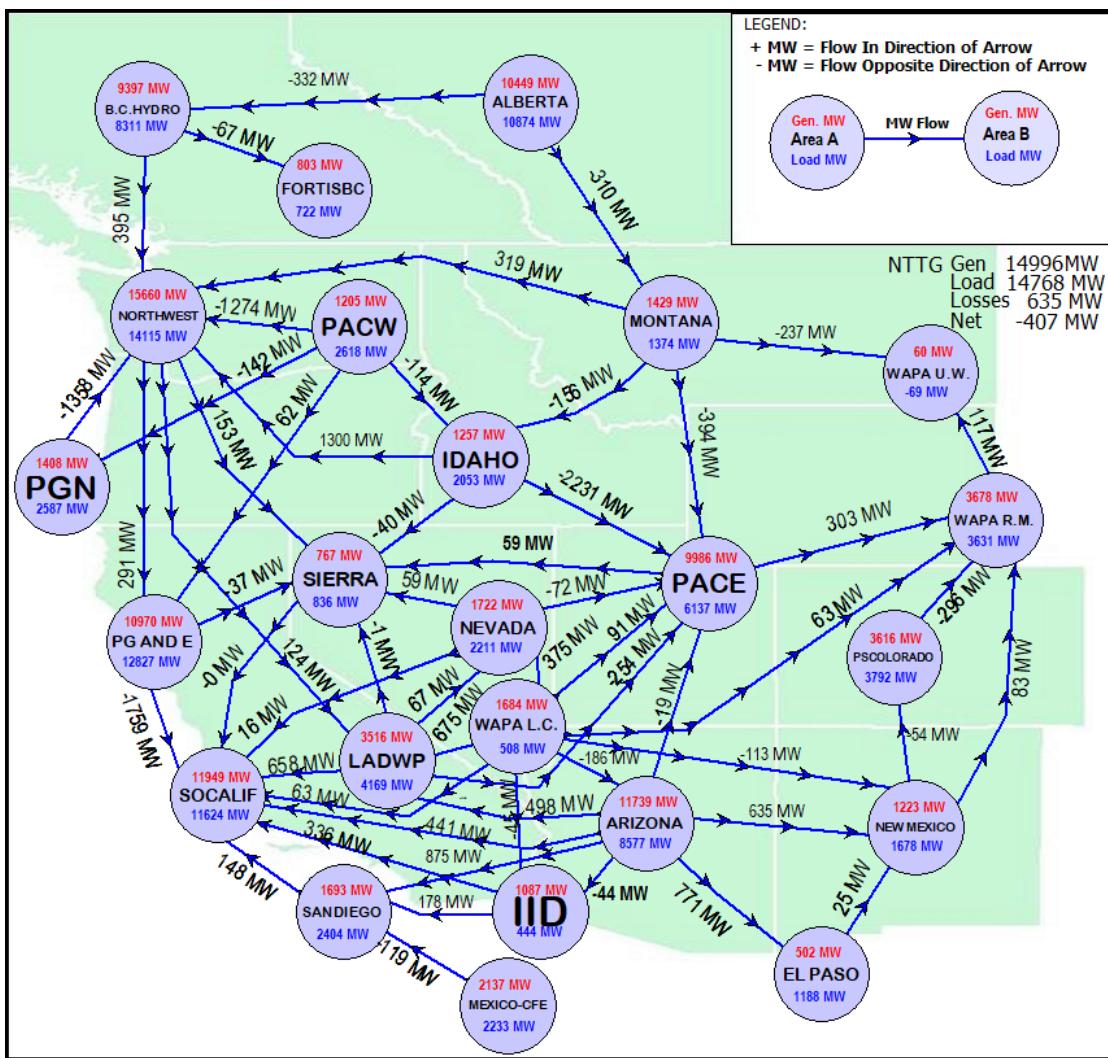

261 This case has a Idaho-Northwest Path flow of 1970 MW eastbound. The NTTG total is
 262 approximately 2,662 MW (import). The NTTG load and generation in this case are 11,586 MW
 263 and 9,408 MW respectively. The bubble diagram follows.

264
 265 **Figure 9- Tie-line flows for high eastbound Idaho-Northwest Path Case**
 266 **(June 3, 2028 Hour 2 - NTTG Case C)**

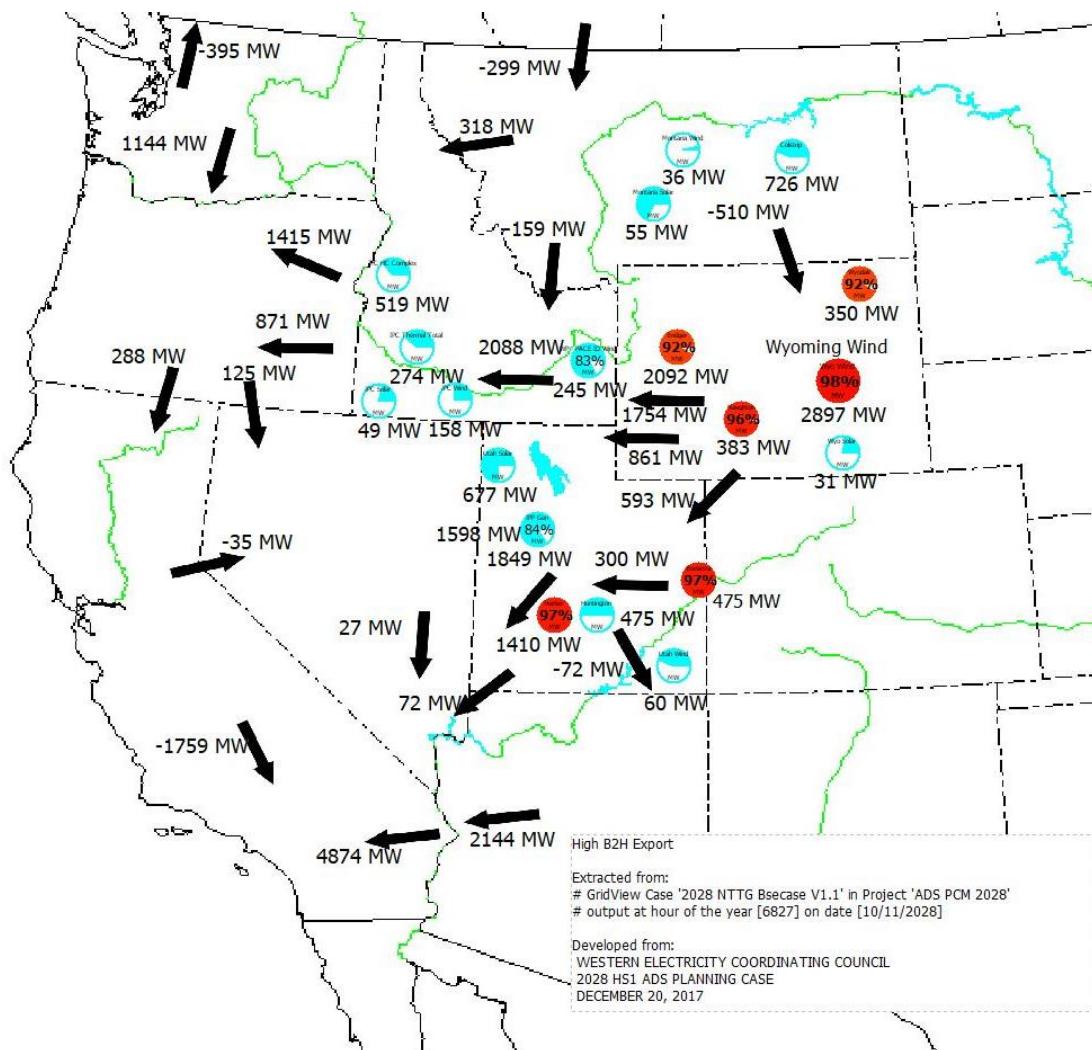
267 The existing Idaho-Northwest import capability is 1200 MW. The PCM dataset result²⁶ there
 268 were 128 hours that exceeded that level, principally in the May-July time period.

²⁶ The PCM dataset is based upon a 2009 average year condition. The dataset does not model contractual commitments, thus, the PCM cannot track ATC. The flows extracted from a PCM run are net flows (non-firm and Firm).

269


270

271

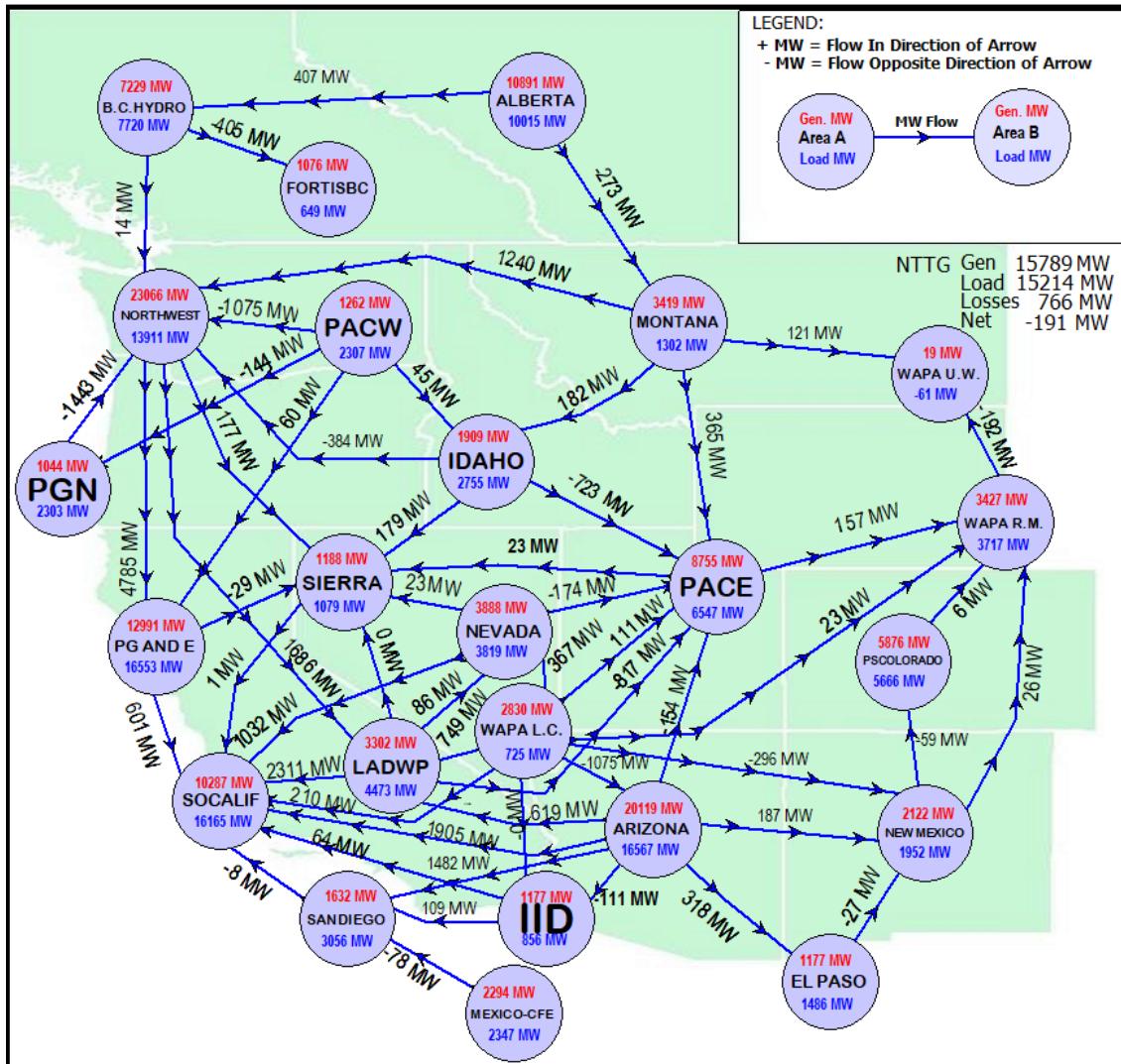

**Figure 10 - Other flows for high eastbound Idaho-Northwest Path Case
(June 3, 2028 Hour 2 - NTTG Case C)**

272 **D. High westbound Idaho-Northwest Case**

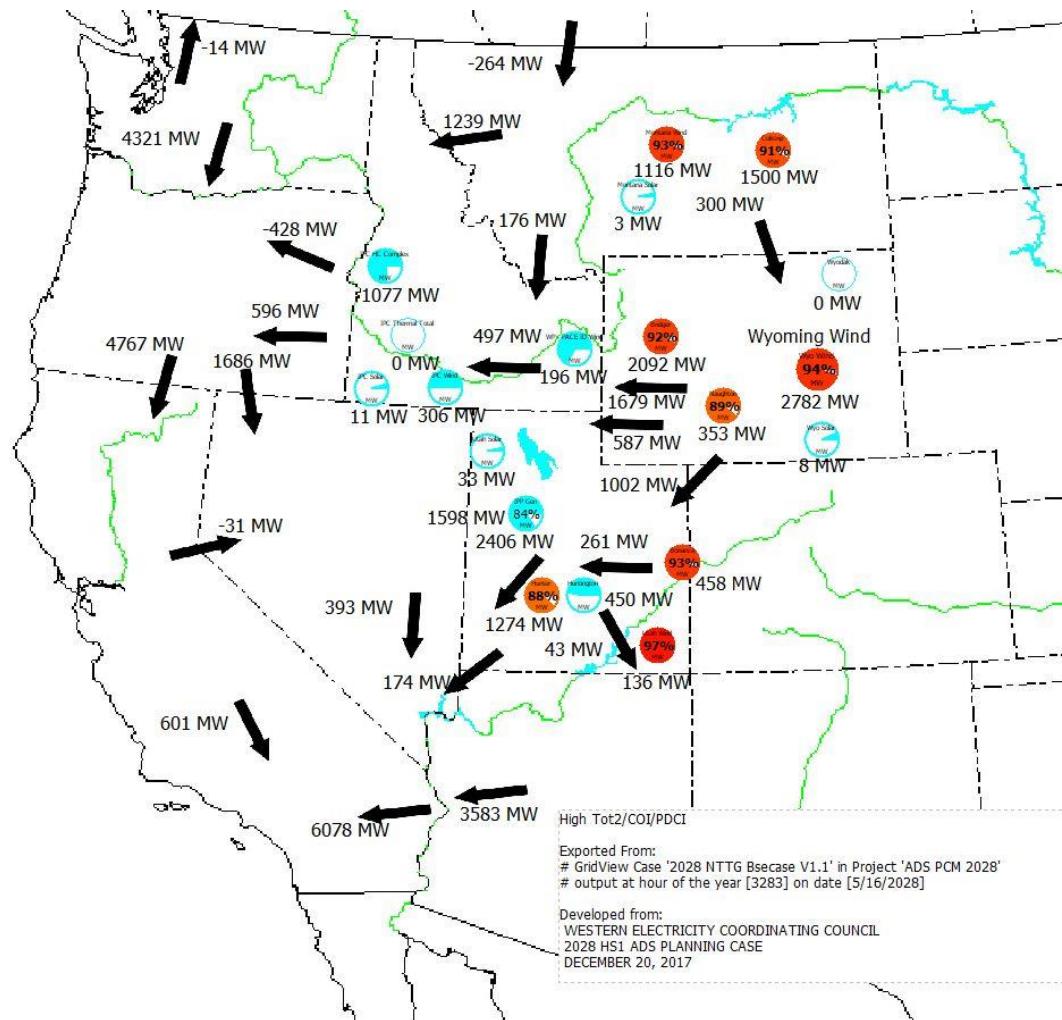
273 This case was originally intended to study export conditions from Idaho to the Northwest. The
 274 exported case from the Production Cost Model was far below the desired condition in the Study
 275 Plan (1415 MW, the target was in excess of 3000 MW). On further review the Technical
 276 Workgroup concluded to not analyze this case further.

277
 278 **Figure 11 - Tie-line flows for High westbound Idaho-Northwest Case**
 279 (October 11, 2028 Hour 11 - NTTG Case D)

280


281

282


Figure 12 - Other flows for High westbound Idaho-Northwest Case
 (October 11, 2028 Hour 11 - NTTG Case D)

283 **E. High Tot2/COI/PDCI Case**

284 The NTTG load and generation are 15,214 MW and 15,789 MW respectively, with the NTTG
 285 footprint nearly balanced with a 191 MW import. The bubble diagram follows. The focus of this
 286 case is to evaluate the performance of the ITPs in supporting interregional transfers

287
 288 **Figure 13 - Tie-line flows for High Tot2/COI/PDCI Case**
 289 **(May 16, 2028 Hour 19 - NTTG Case E)**

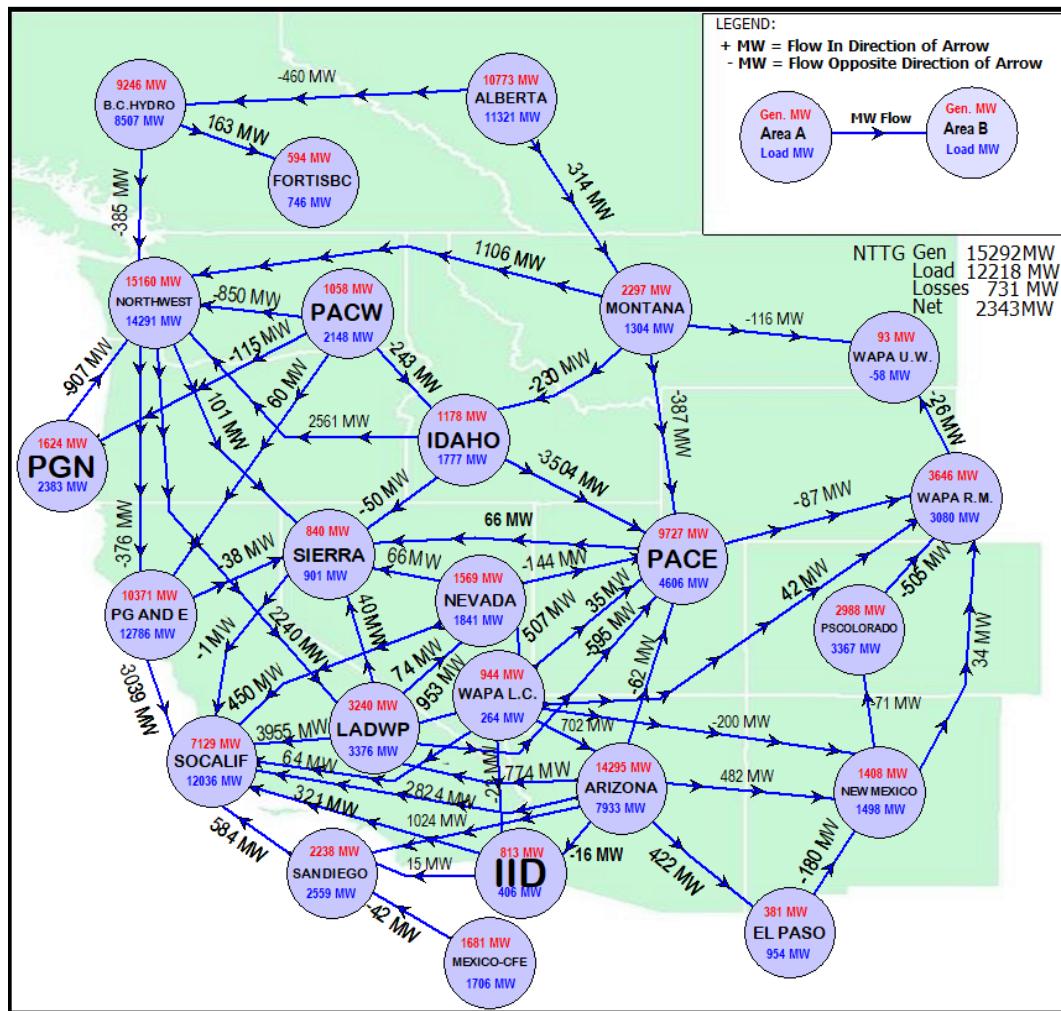
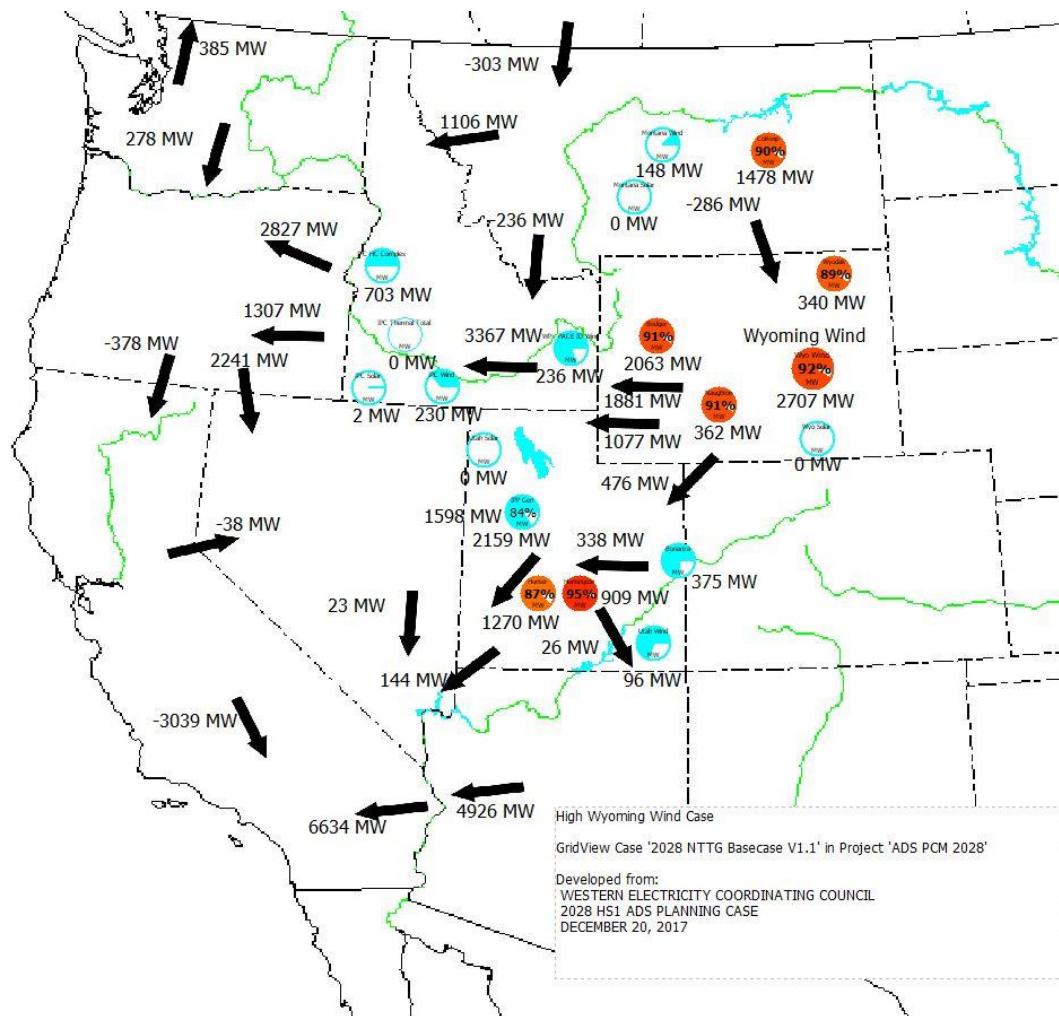


Figure 14 - Other flows for High Tot2/COI/PDCI Case (May 16, 2028 Hour 19 - NTTG Case E)


293 The wind level in this case, 2782 MW, is likely to be exceeded 1432 hours per year.

294 **F. High Wyoming Wind Case**

295 The NTTG load and generation in this case are 12,218 MW and 15,307 MW respectively with a
 296 NTTG export of 2,344 MW. The study plan target at 90% capacity factor was 2655 MW, the
 297 extracted case wind production was 2707 MW. The bubble diagram follows.

298
 299 **Figure 15 - Tie-line flows for High Wyoming Wind Case**
 300 **(February 24, 2028 at Midnight - NTTG Case F)**

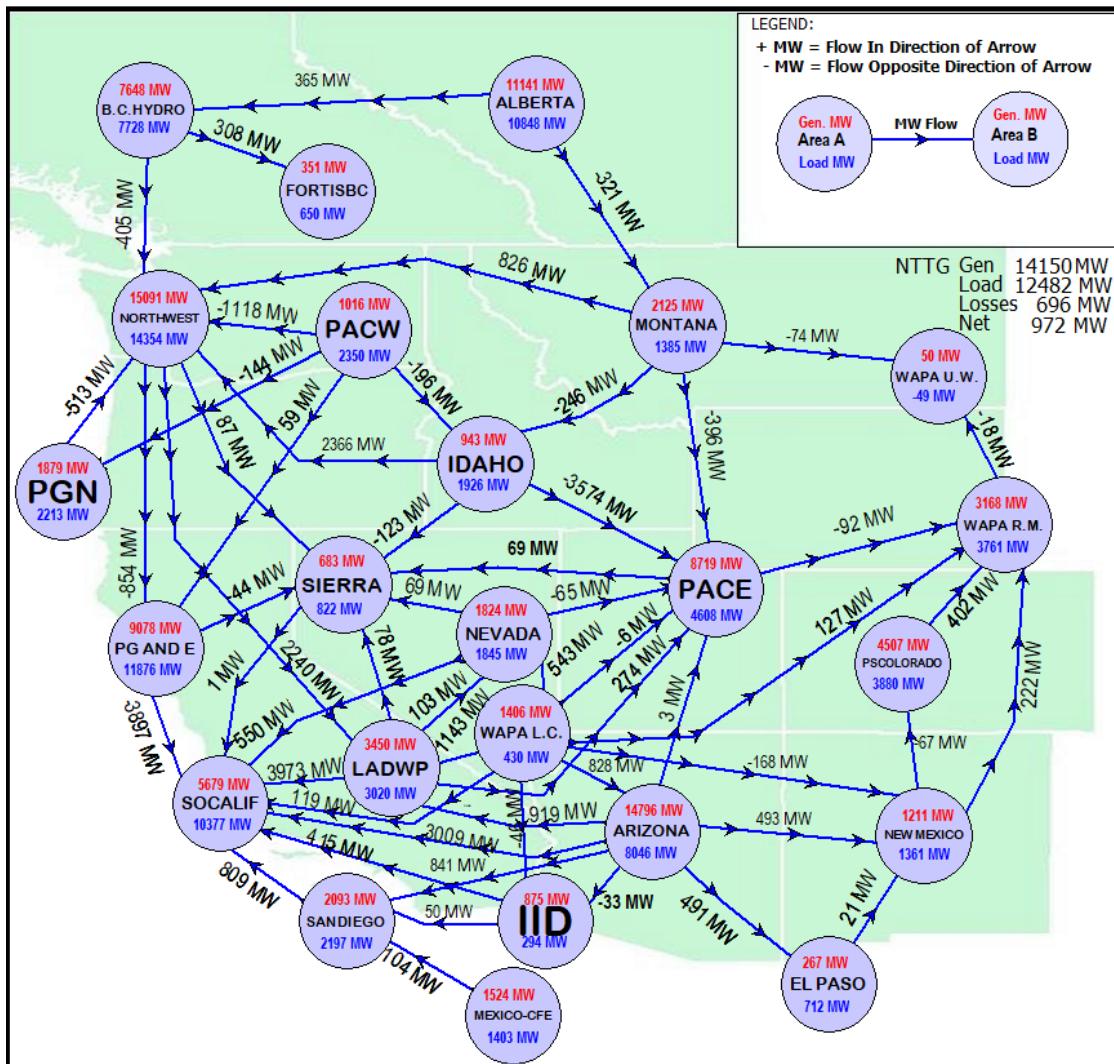
301

302

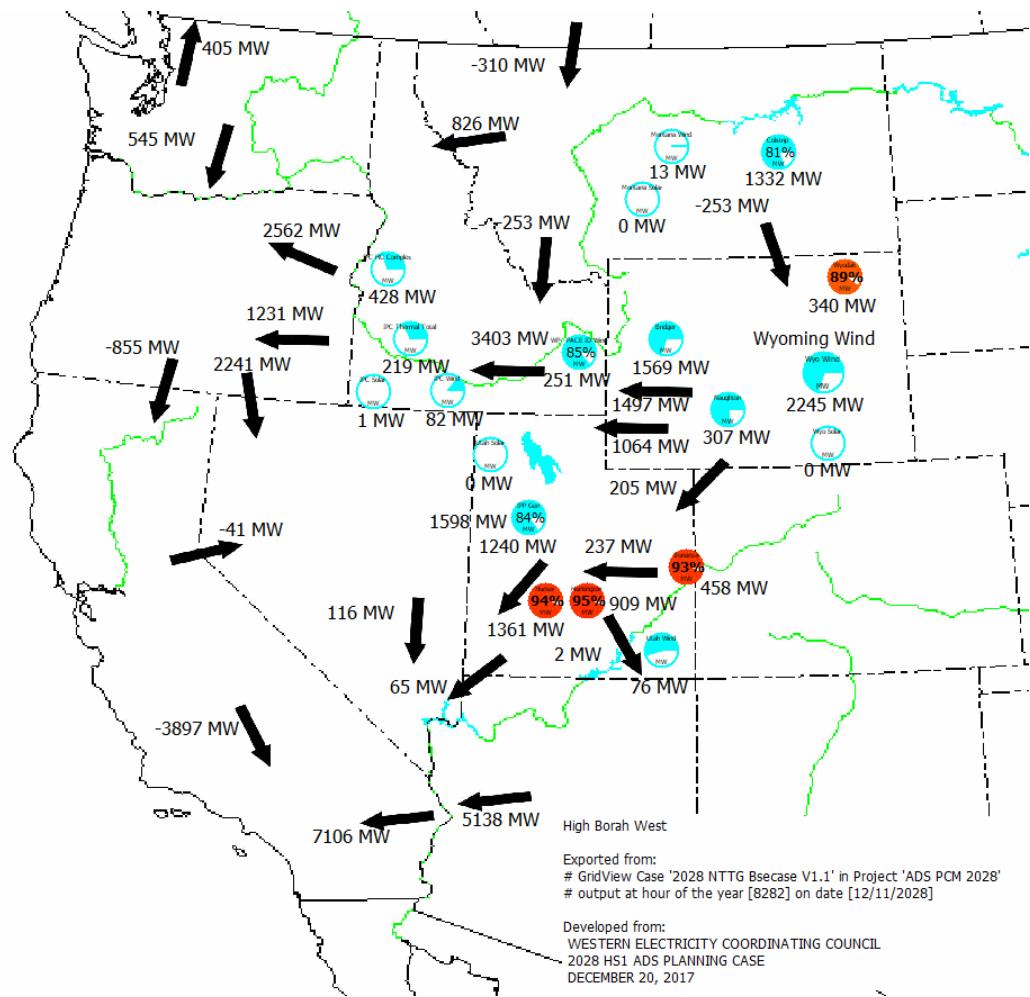
303

**Figure 16 – Other flows for High Wyoming Wind Case
(February 24, 2028 at Midnight - NTTG Case F)**

304


305

306


As described in Section IID, the wind target of 2655 MW is approximately 90% exceedance level of the existing and future wind energy production. This target level will be exceeded 1020 hours in an average year. This condition is more likely in the mid-September through May time period.

307 **G. High Borah West Case**

308 The NTTG load and generation in this case are 12,482 MW and 14,150 MW respectively with a
 309 NTTG export of 972 MW. The Borah West path flow is 3,403 MW. The present rating of the
 310 Borah West path is 2557 MW, any firm transfers above this level will require upgrades, without
 311 these upgrades, firm resources east of the cutplane could only serve east side firm loads. In the
 312 PCM results²², the 2557 MW net flow level was exceeded 11 times. The bubble diagram follows.

313
 314 **Figure 17 – Tie-line flows for High Borah West Case**
 315 (December 11, 2028 Hour 2 - NTTG Case G)

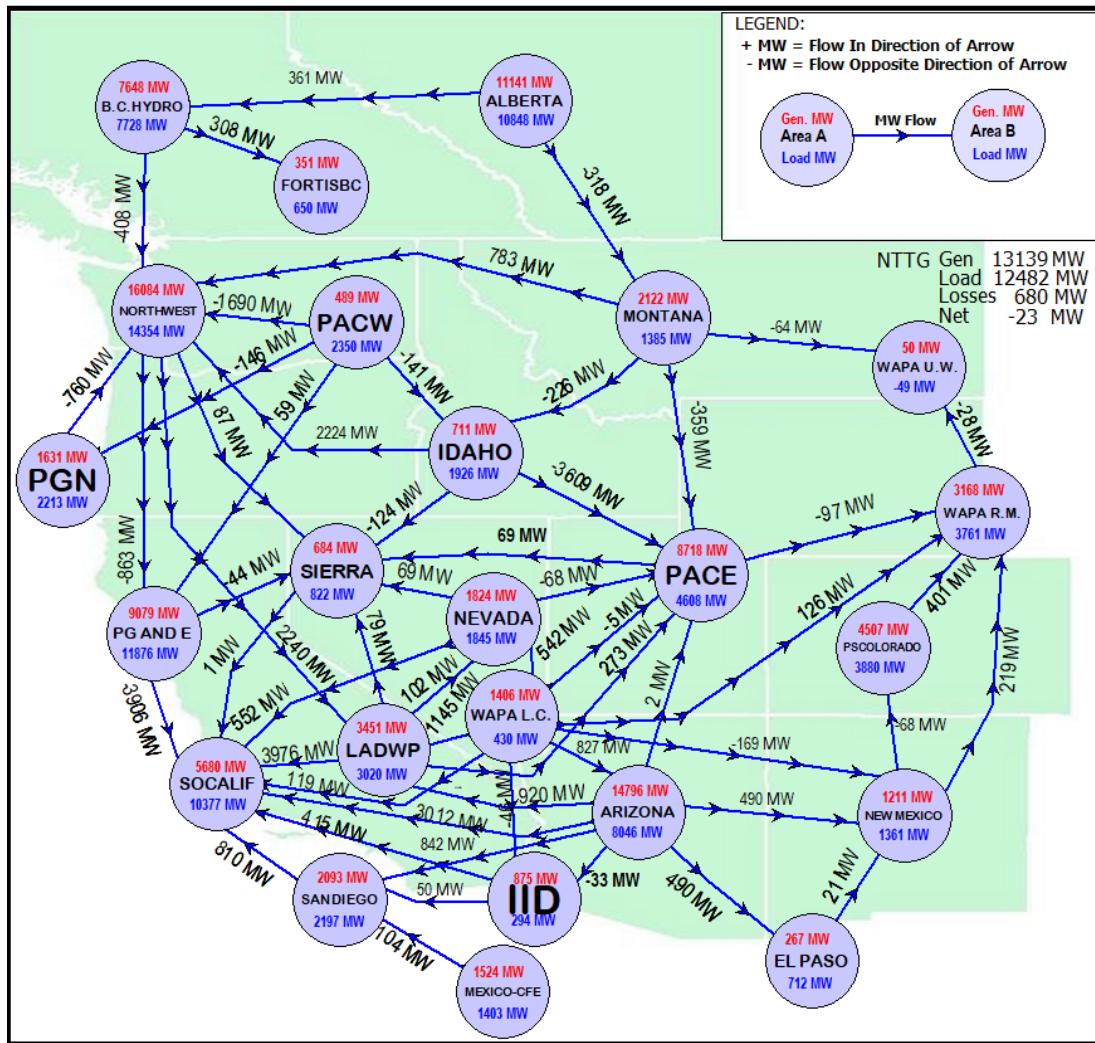
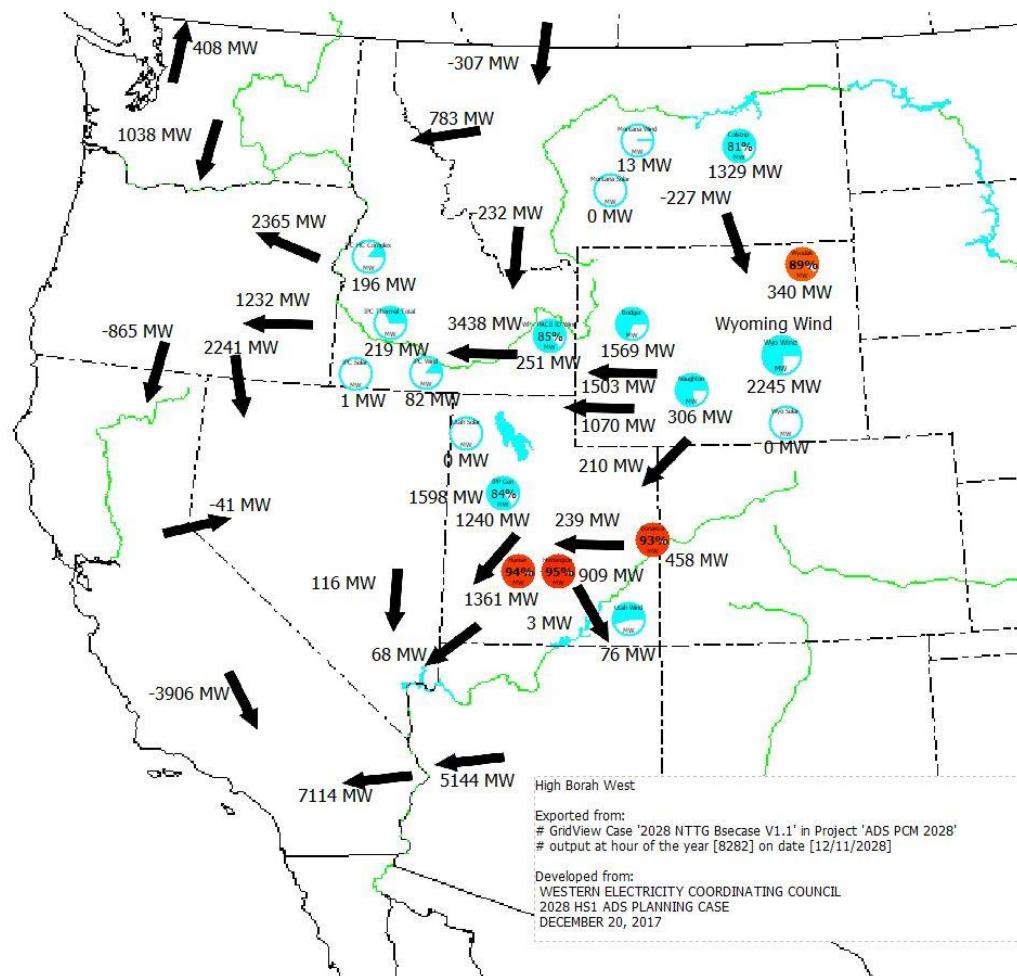


Figure 18 – Other flows for High Borah West Case (December 11, 2028 Hour 2 - NTTG Case G)

A second version of this condition was developed to test whether the Borah West flow condition was dependent on the export condition. The generation dispatch condition was reviewed and the following changes were made to the original G Case:

- Reduced/Turned Off:
 - Klamath Falls 515 MW
 - Port Westward 246 MW
 - Brownlee 177 MW
 - Hells Canyon 53 MW
 - Yale/Merwin 12 MW
- Increased:
 - Coulee 1026 MW

The resulting case is shown in Figure 19 and Figure 20, the case has been dispatched to a near neutral NTTG exchange. The Borah West flow increased 35 MW to 3,438 MW.



332

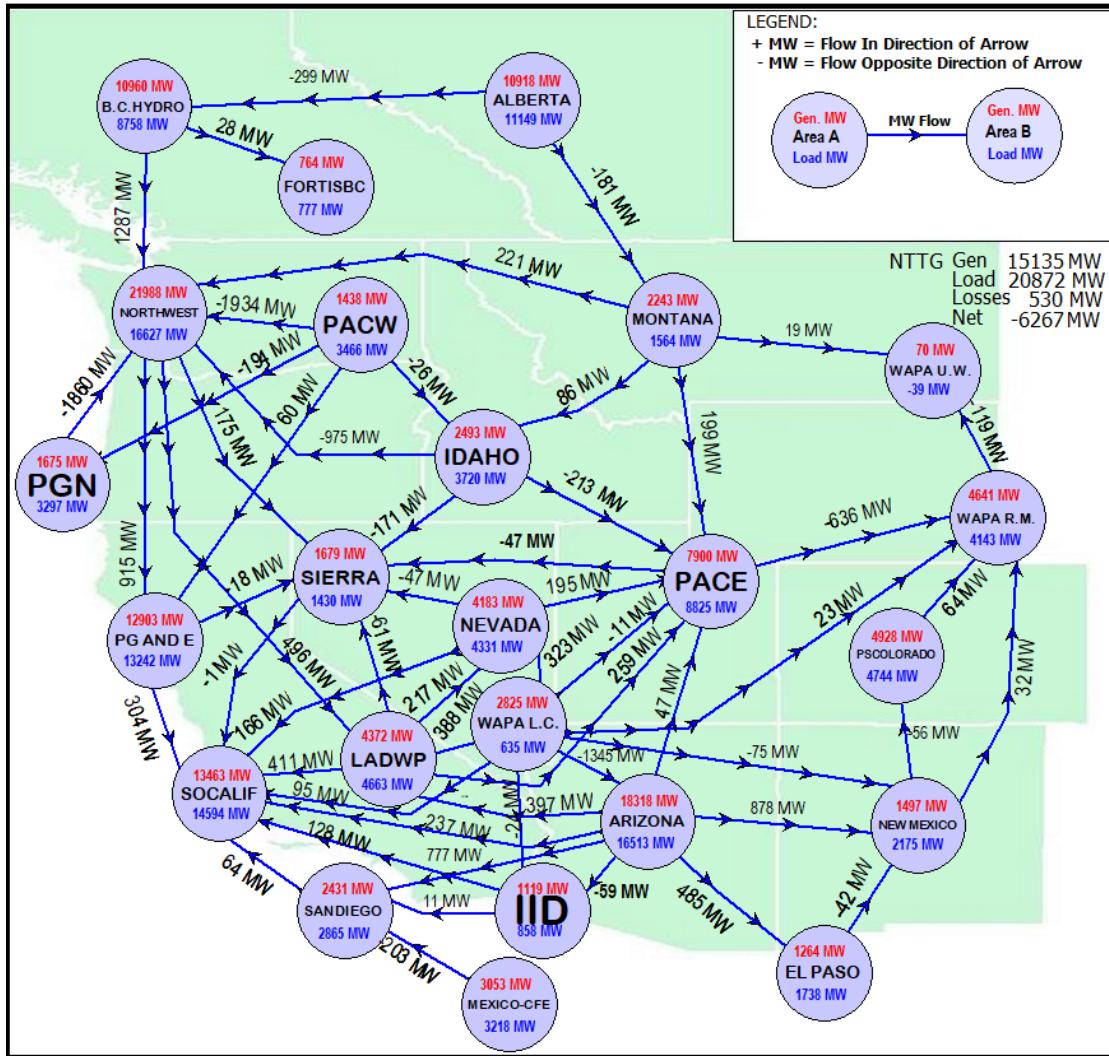
333

334

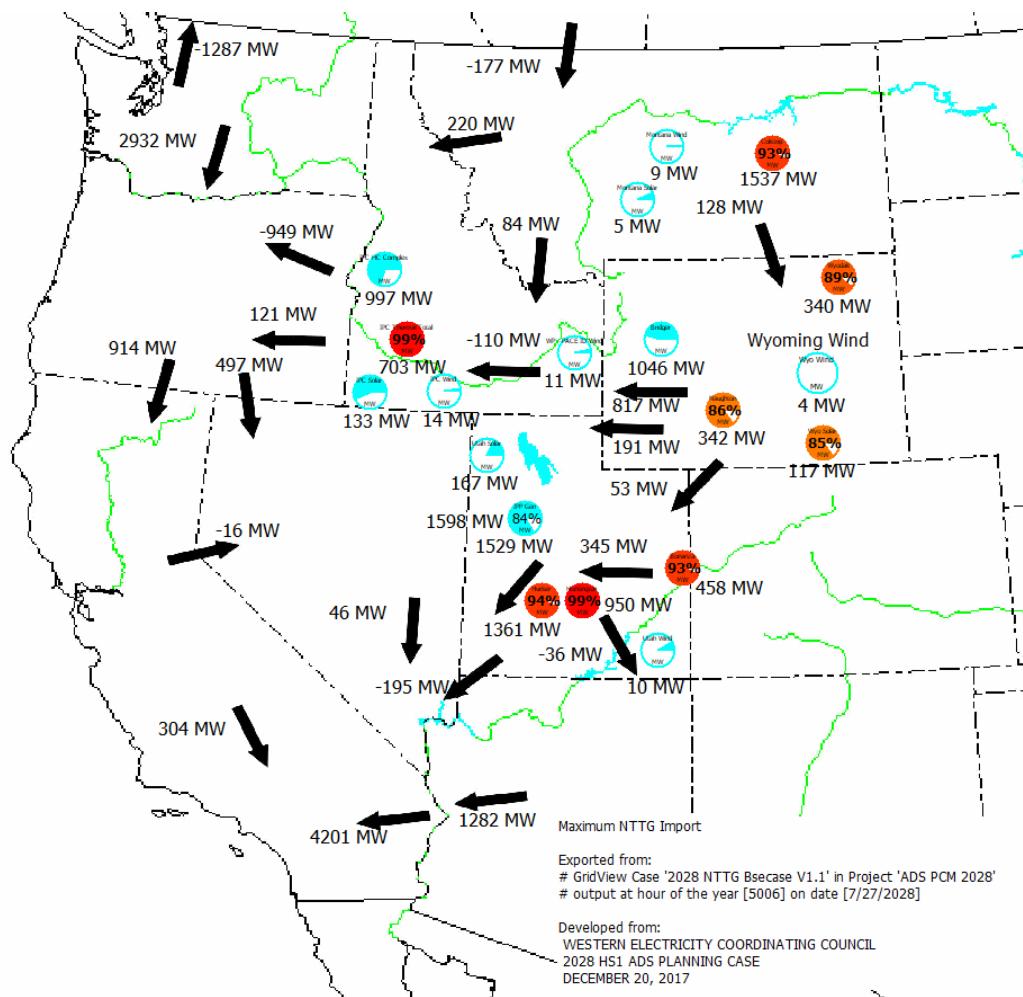
Figure 19 – Tie-line flows for High Borah West Case
(December 11, 2028 Hour 2 - NTTG Case Gv2)

335

336


337

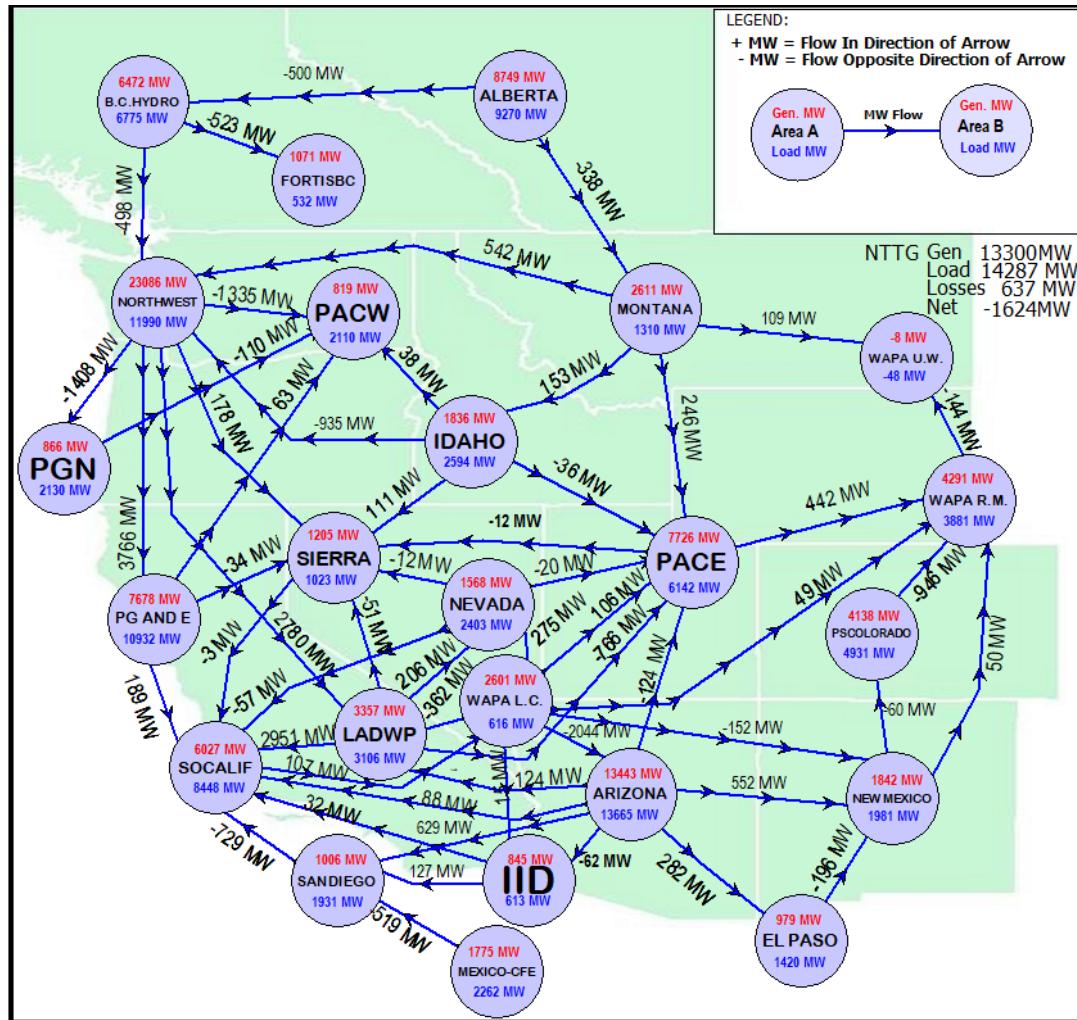
338


The wind level in this case, 2245 MW, is likely to be exceeded 2530 hours per year, see Section IIID.

340 H. High NTTG Footprint Import Case

341 The NTTG load and generation in this case are 20,872 MW and 15,135 MW respectively with a
 342 NTTG import of 6,267 MW. Currently there are no operating procedures which would restrict
 343 this operation in this dispatch region. This case was selected to test this condition for any
 344 concerns. One notable condition of this dispatch hour is that the Wyoming wind production was
 345 near zero MW. The bubble diagram follows.

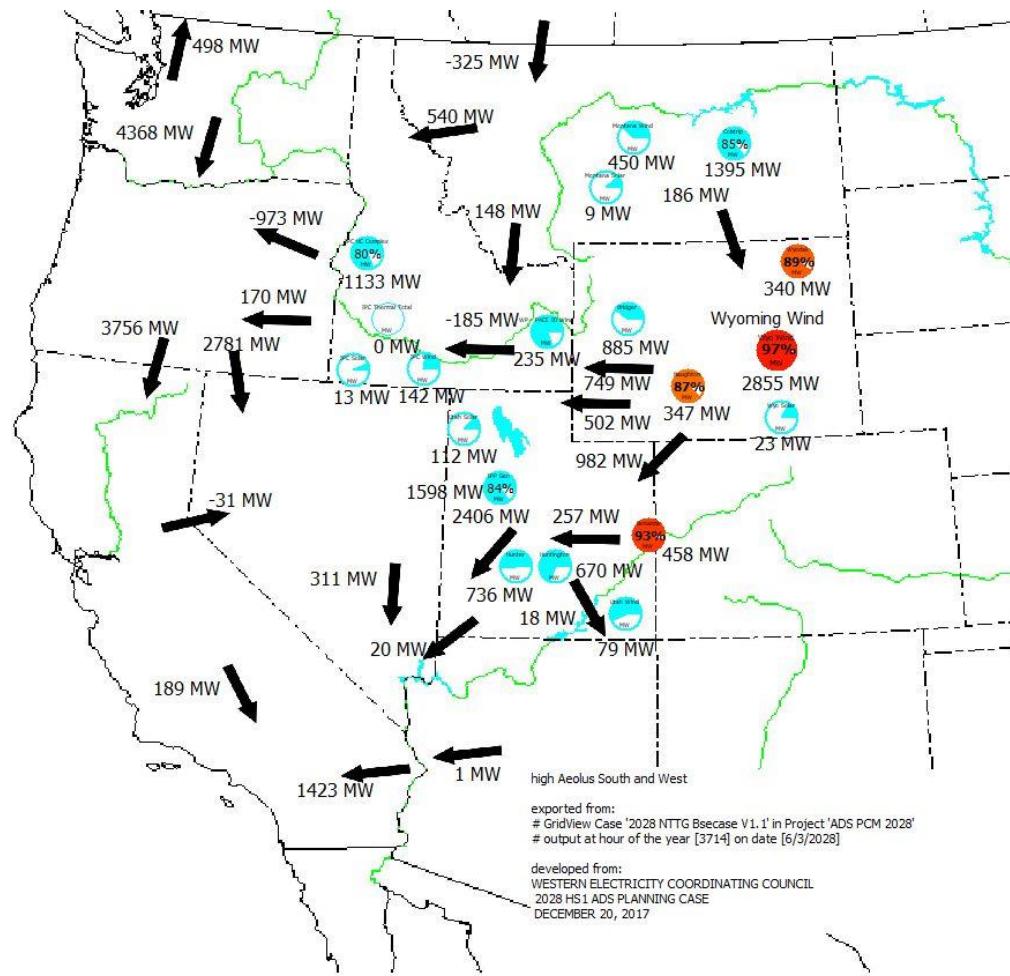
346
 347 **Figure 21 – Tie-line flows for High NTTG Footprint Import Wind Case**
 348 (July 27, 2028 Hour 14 - NTTG Case H)



352

I. High Aeolus West and South Case

353
354
355
356
357


The NTTG load and generation in this case are 14,287 MW and 13,317 MW respectively with a NTTG import of 1,624 MW. In reviewing the flows of the other extracted hours, it was noted that few hours fully stressed the Gateway South project. This hour was selected for that purpose. In this case, the Gateway South project is flowing 1,018 MW. The bubble diagram follows.

358

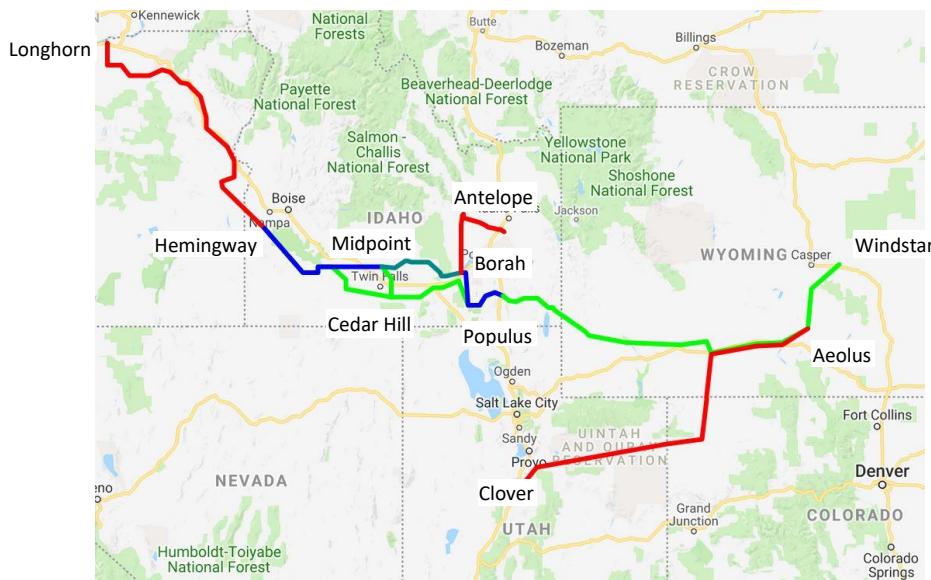
359
360

Figure 23 – Tie-line flows for High Aeolus West and South Case
(June 3, 2028 Hour 18 - NTTG Case I)

361

362 **Figure 24 – Other flows for High Aeolus West and South Case**
 363 **(June 3, 2028 Hour 18 - NTTG Case I)**

364 The wind level in this case, 2855 MW, is likely to be exceeded 513 hours per year, see Section
 365 IID.

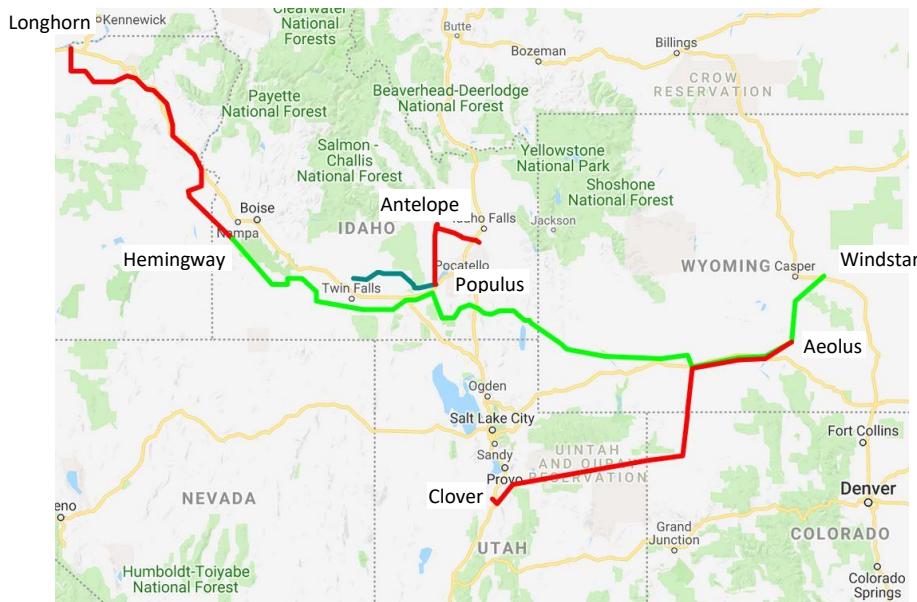

366 **V. Change Case Results**

367 For each of these stress conditioned cases, a “Null” Change Case was prepared, and reliability
 368 results were analyzed. The Null case represents roughly today’s transmission topology with
 369 2028 Loads and Resource requirements. For all null cases, the Antelope resource addition
 370 resulted in poor performance without the associated Antelope Projects.

371 Generally, cases can be ranked in increasing severity order: the Heavy Winter case (B), the high
 372 NTTG Import case (H), the Heavy Summer case (A); the high eastbound Idaho-Northwest case
 373 (C); the High Tot2 case (E); the high Borah West case (G), the High Wyoming wind case (F), and
 374 finally the Aeolus West and South case (I) being the worst.

375 The IRTP as submitted in Quarter 1 includes the following Non-Committed projects:

- 376 • The Boardman to Hemingway Project (Longhorn-Hemingway)
- 377 • The Gateway West Project which contains a number of sub-sections:
 - 378 ○ Windstar-Aeolus 230 kV
 - 379 ○ Aeolus-Anticline (Jim Bridger) 500 kV
 - 380 ○ Anticline-Populus 500 kV
 - 381 ○ Populus-Borah 500 kV
 - 382 ○ Populus- Cedar Hill 500 kV
 - 383 ○ Cedar Hill-Hemingway 500 kV
 - 384 ○ Cedar Hill- Midpoint 500 kV
 - 385 ○ Borah-Midpoint 345 to 500 kV conversion
 - 386 ○ Midpoint-Hemingway #2 500 kV
- 387 • The Gateway South Project:
 - 388 ○ Aeolus-Clover 500 kV
- 389 • The Antelope Projects:
 - 390 ○ Goshen-Antelope 345 kV
 - 391 ○ Antelope-Borah 345 kV



392 **Figure 25 - IRTP Projects**

393 The prior Regional Transmission Plan from last planning cycle included a subset of the projects
394 submitted in the current Quarter 1:

- 395 • The Boardman to Hemingway Project (Longhorn-Hemingway)
- 396 • The Gateway West Project which contains several sub-sections:
 - 397 ○ Windstar-Aeolus 230 kV
 - 398 ○ Aeolus-Anticline (Jim Bridger) 500 kV
 - 399 ○ Anticline-Populus 500 kV
 - 400 ○ Populus- Cedar Hill 500 kV

- Cedar Hill-Hemingway 500 kV
- Borah-Midpoint 345 to 500 kV conversion
- The Gateway South Project:
 - Aeolus-Clover 500 kV
- The Antelope Projects:
 - Goshen-Antelope 345 kV
 - Antelope-Borah 345 kV

Figure 26 - pRTP Projects

To efficiently study the wide range of potential combinations of Non-Committed projects, the TWG formulated a Change Case matrix, an initial formulation of which was included in the Biennial Study Plan²⁷. Once the stressed power flow cases had been selected and developed, the TWG modified the matrix to better reflect the recommended analysis. During the month of August 2018, stakeholder comments were solicited on the draft set of projects selected for analysis in the Change Case matrix. No comments were submitted. The matrix was also presented to the Planning Committee at the October and November meetings. Table 13 below, is the Change Case matrix that was used by the TWG:

²⁷ The Biennial Study Plan is the study plan used to produce the Regional Transmission Plan, as approved by the NTTG Steering Committee.

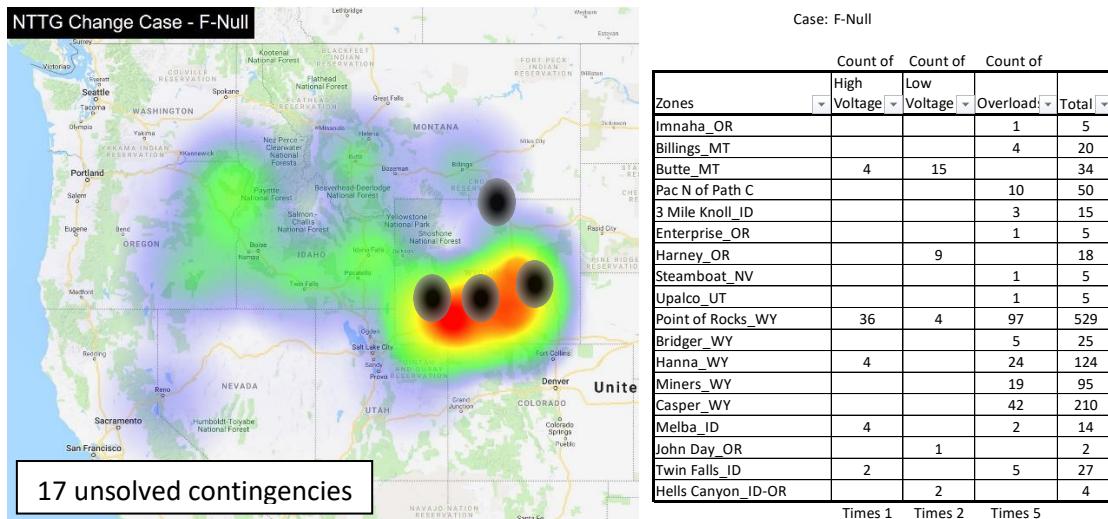
Case	B2H	S	Gateway W	Gateway Projects	Antelope SWIP N	Cross-Tie	TWE DC	TWE DC/AC	Stressed Conditions:
null									
pRTP	✓	✓	a	✓					A B C F G H I
iRTP	✓	✓	✓	✓					A B C E F G H I
CC1	✓								A B C E F G H I
CC2		✓			✓				A B C F G I
CC3		✓	a						A C E F I
CC4	✓		a	✓					A C E F I
CC5	✓	✓			✓				A C E F I
CC6	✓	✓	a						A B C E F G H I
CC7								✓	A B C E F I
CC8							✓		A B C E F I
CC9						✓			A B C F I
CC10					✓				A B C F
CC11								✓	(E)+RPS@1500
CC12		✓			✓				(E)+RPS@1500
CC13			a		✓				(E)+RPS@1500
CC14		✓	a		✓				(E I)+RPS@1500
CC15					✓			✓	(E)+RPS@1500
CC16		✓			✓			✓	(E)+RPS@1500
CC17			a		✓			✓	(E)+RPS@1500
CC18		✓	a		✓			✓	(E)+RPS@1500
CC19					✓		✓		(E)+RPS@1500
CC20		✓			✓		✓		(E)+RPS@1500
CC21		✓	a		✓		✓		(E I)+RPS@1500
CC22			a		✓		✓		(E)+RPS@1500
CC23		✓	a		✓		✓		(E I)+RPS@1500
CC24		✓	a		✓		✓		(E I)+RPS@3000
CC25			a		✓		✓		(E)+RPS@3000
CC26		✓			✓		✓		(E)+RPS@3000
CC27		✓	a		✓		✓		(E)+RPS@4500
CC28			a		✓		✓		(E)+RPS@3000
CC29		✓			✓		✓		(E)+RPS@3000
CC30		✓	a		✓		✓		(E)+RPS@4500
CC31	✓	✓	b	✓					E F G I
CC32	✓	✓	c	✓					F G I
CC33	✓	✓	d	✓					E F I

The change case does not include the non-Committed Project
 ✓ The change case includes the non-Committed Project
 a Gateway West without Midpoint-Hemingway #2, Cedar Hill-Midpoint and Populus-Borah
 b pRTP less Populus-Cedar Hill-Hemingway
 c pRTP less Populus-Cedar Hill-Hemingway plus Populus-Borah
 d pRTP less Populus-Cedar Hill-Hemingway and Anticline-Populus
 The change case was run with and without B2H

420

421

Table 13 - Change Case matrix used in the development of this report


422

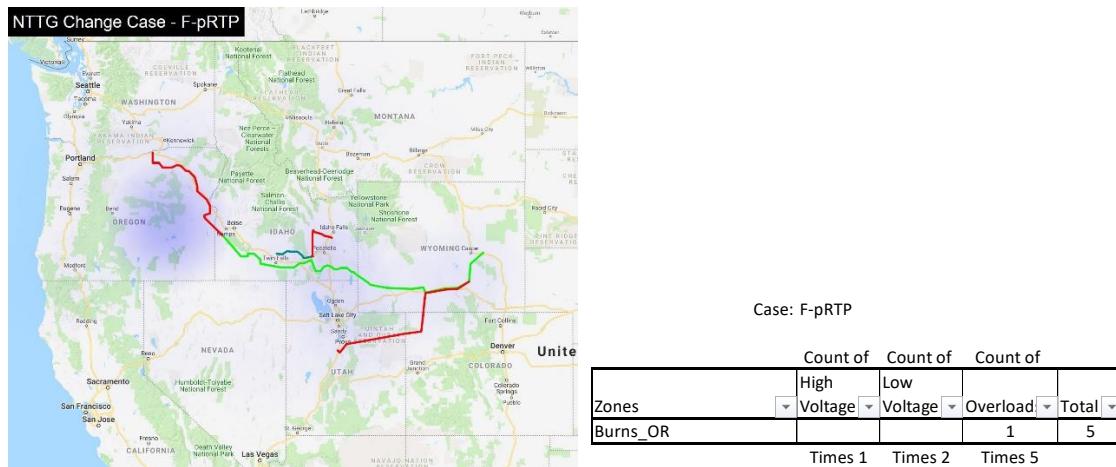
423

424

In all, over 150 reliability studies were performed with the previously mentioned 480+ contingencies. [Appendix C](#) lists selected path flows from a subset of the cases developed. A summary of the performance of these cases is described below. To better communicate the

425 results of these studies, the TWG created heat maps which present a weighted²⁸ graphical
 426 performance of a Change Case on a specific flow condition. In these heat maps, performance
 427 issues were accumulated for each powerflow zone, for example, the F-Null case performance
 428 looks like:

429


430 **Figure 27 and Table 14 – Example Heat Map and Companion Table of the F-Null Case**

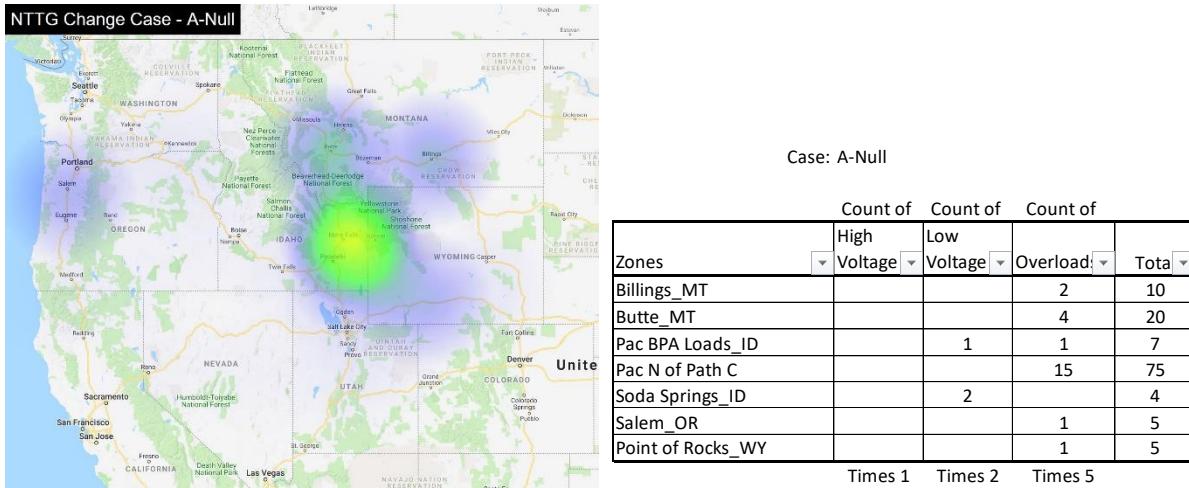
431 This map does not indicate where the contingency occurred but the general location where the
 432 performance (e.g., overloaded transmission line) issues occurred for the contingency which may
 433 be hundreds of miles away. In the above heat diagram the accumulation of overloads and
 434 voltage issues are represented by the various colors. The map shows three general areas of
 435 reliability violations – NW Wyoming/SE Montana, southern Idaho and SE Washington/Central
 436 Oregon. These violations are occurring because the transmission systems are incapable of
 437 handling anticipated transfers across that area's transmission system.

438

The same map for the F-pRTP case looks like:

²⁸ High voltage conditions had a weighting of 1; Low voltage conditions had a weighting of 2; and overloads of branches had a weighting of 5. For example, a zone in which 10 contingencies caused an overload of one branch in that zone would receive a total weight of 50 (i.e., 10 x 5), which would then be translated into a color on the map. A blue color represents a weighted total of about 10, green is a count up to 30, yellow is a count up to 50 and red is for a weighted count exceeding about 70. In a number of studies, there were many contingencies that were unable to be solved indicating that that particular portion of the system was stressed well beyond its capabilities for reliable operation. In those cases, black circles have been added to the figures to indicate the approximate location of violations that would have occurred had the case stress reduced to permit a solution.

439

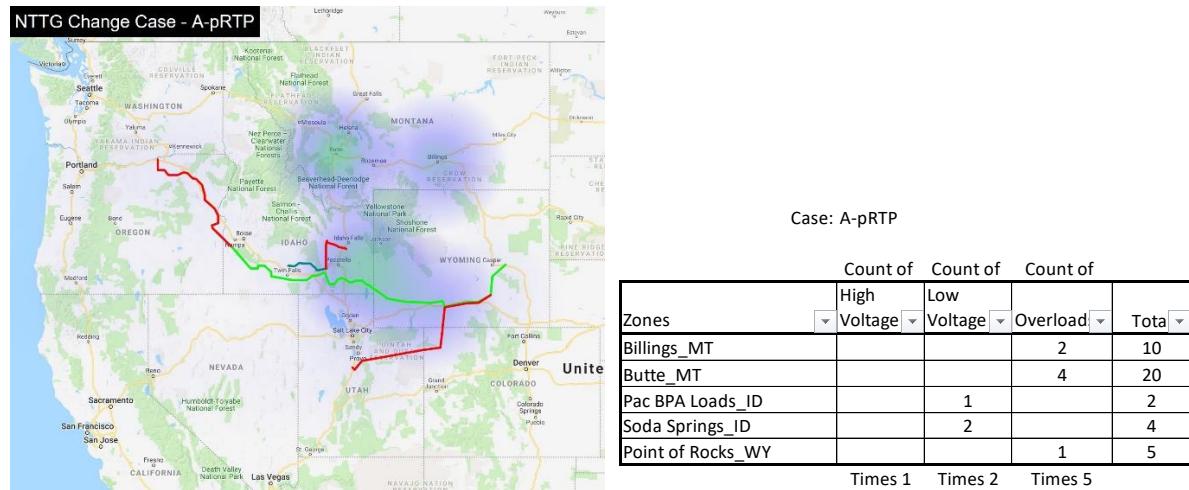

440 **Figure 28 and Table 15 – Heat Map and Companion Table of the F Case**
 441 **with the pRTP facilities included**

442 In this case, the map points to an overload in Oregon area on the Burns Series capacitor that is
 443 likely to be replaced prior to 2028. The rating of the bank will be re-evaluated to avoid it
 444 becoming a bottleneck to system performance. This map shows the dramatic improvement of
 445 the pRTP Change Case when compared to the Null case.

446

A. Heavy Summer Case results

447 In the Heavy Summer Null case, the most significant issue is related to the integration of the new
 448 Antelope Project resources. The remaining issues in the pRTP case shown in Figure 30 are local load
 449 service issues that are expected in a 1 in 5 peak load scenario.



450

451

Figure 29

Table 16

452

453

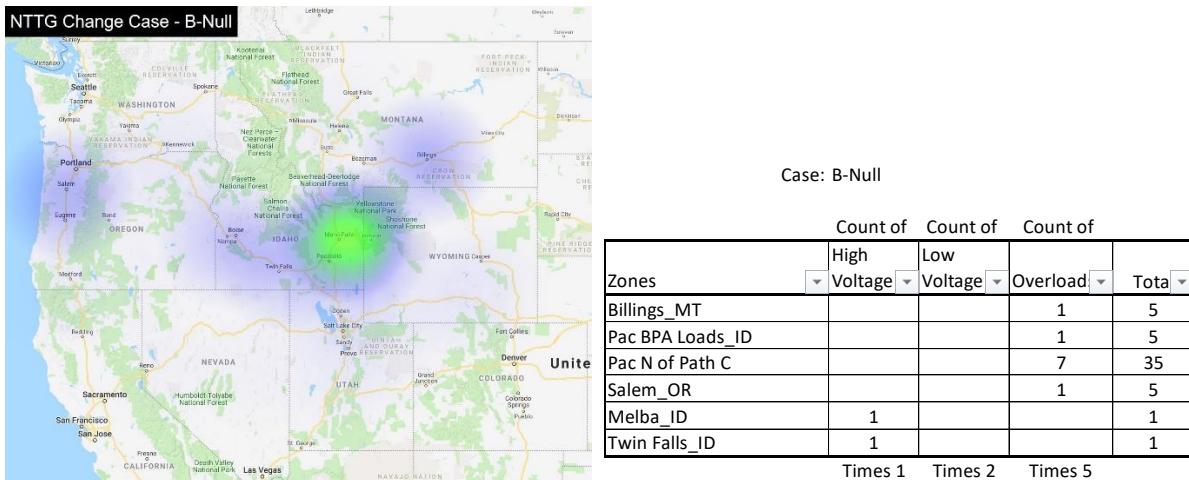
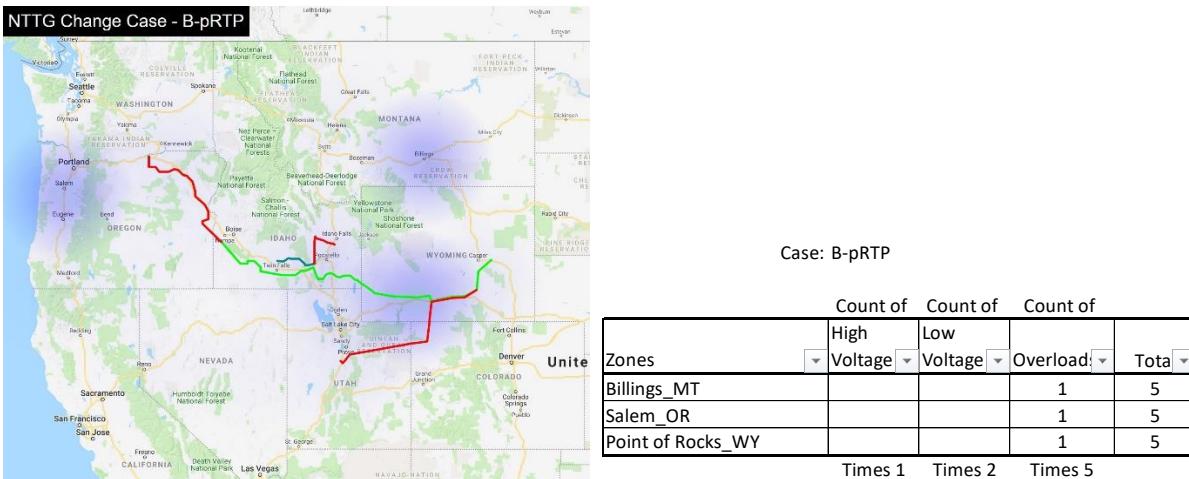

Figure 30

Table 17

454

B. Heavy Winter Case results

455 In the Heavy Winter Null case, similar to the Heavy Summer Null case, the most significant issue is
 456 related to the integration of the new Antelope Project resources. The remaining issues in the pRTP
 457 case shown in Figure 32 are very slight overload near Billings and an N-2 overload issue at Bridger.



458

459

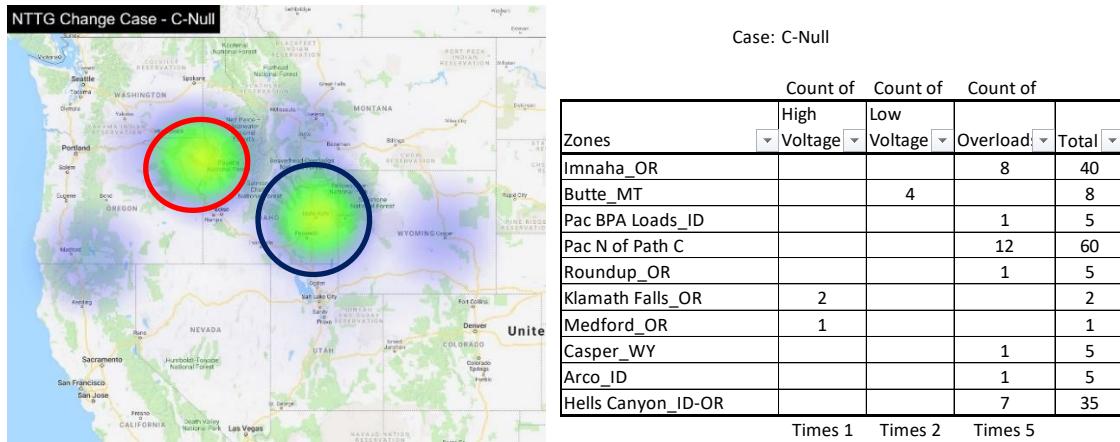
Figure 31

Table 18

460

461

Figure 32

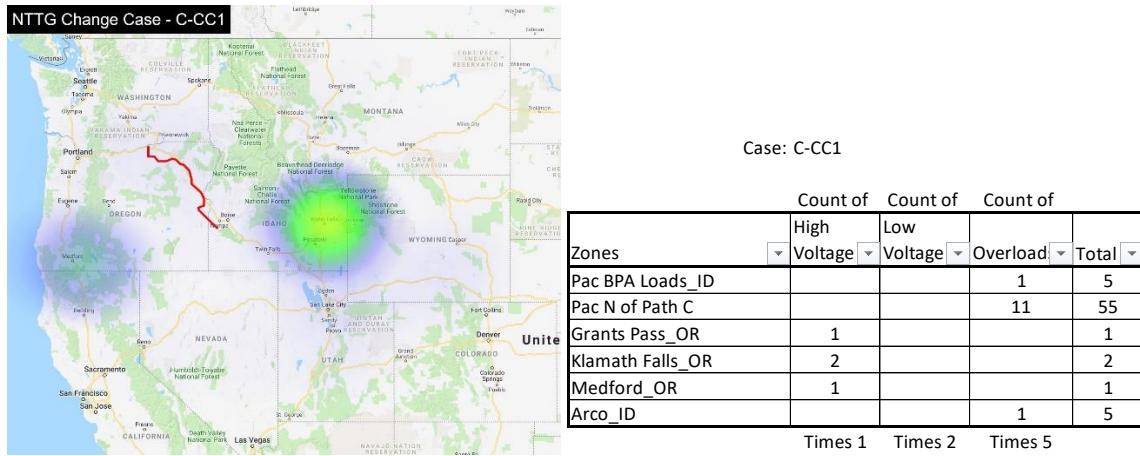

Table 19

462

C. High Eastbound Idaho-Northwest Case results

463
464

Similarly, comparing the High Import Null Case (C-Null) with a case where the B2H project (inserted as a red line in the right heat map) is added is shown below:



465

466

Figure 33

Table 20

467

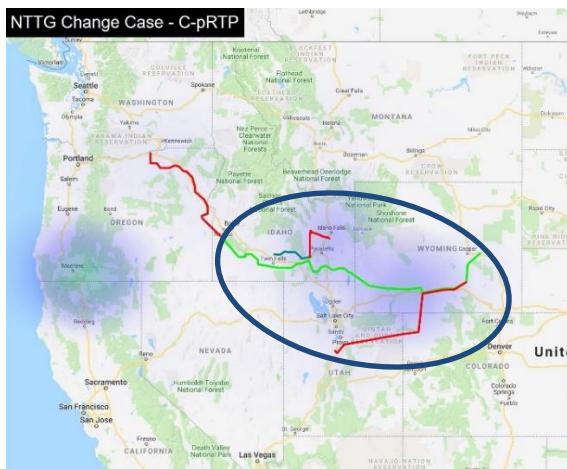

468

Figure 34

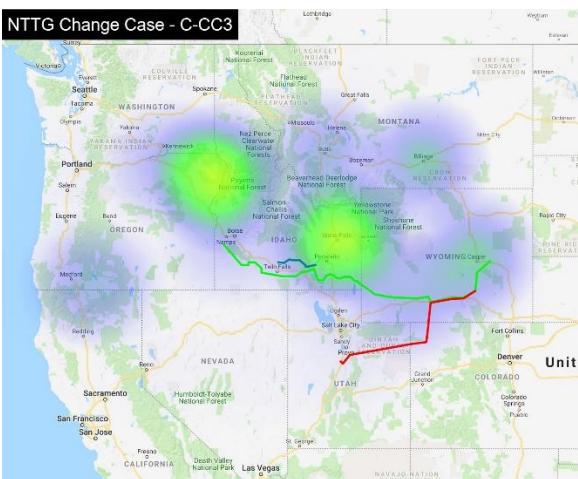
Table 21

469
470
471
472
473
474
475

The stress across the Idaho-Northwest path, shown within the red oval, has been relieved when B2H is added, as well as, stress across the Montana-Idaho path (WECC Path 18). The Antelope Resource is the cause of the violations shown in the blue oval. The heat map in Figure 34 indicates that the B2H project has little impact on the integration of the Antelope Resource. Including the other Non-Committed projects of the prior RTP in Figure 35 (transmission lines shown in the blue oval) with the B2H project, the violations for the C flow condition are eliminated.

Case: C-pRTP

Zones	Count of	Count of	Count of	
	High Voltage	Low Voltage	Overload	Total
Pac N of Path C	1			1
Grants Pass_OR	1			1
Klamath Falls_OR	2			2
Medford_OR	1			1
Point of Rocks_WY			1	5


Times 1 Times 2 Times 5

476

477

Figure 35

478 Change Case CC3, in the heat map Figure 36 below, tests to see if the Gateway West and/or
479 Gateway South projects shown in the blue oval above can replace or be comparable to the B2H
480 or the Antelope projects.

Case: C-CC3

Zones	Count of	Count of	Count of	
	High Voltage	Low Voltage	Overload	Total
Imnaha_OR			6	30
Billings_MT			4	20
Butte_MT		4		8
Pac BPA Loads_ID			1	5
Pac N of Path C			10	50
Roundup_OR			1	5
Klamath Falls_OR	2			2
Medford_OR	1			1
Point of Rocks_WY			1	5
Casper_WY			4	20
Melba_ID	1			1
Arco_ID			1	5
Hells Canyon_ID-OR			6	30

Times 1 Times 2 Times 5

481

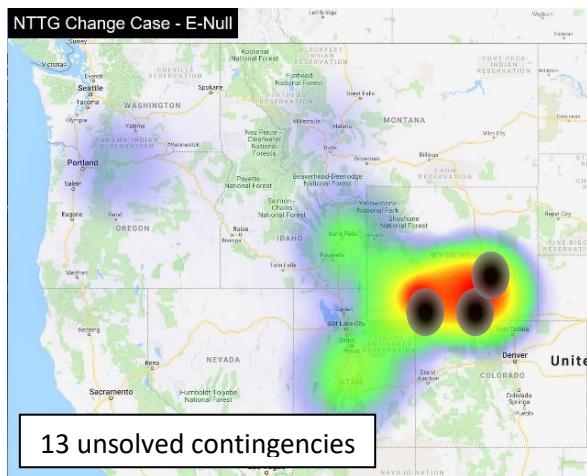
482

Figure 36

483

Table 23

484

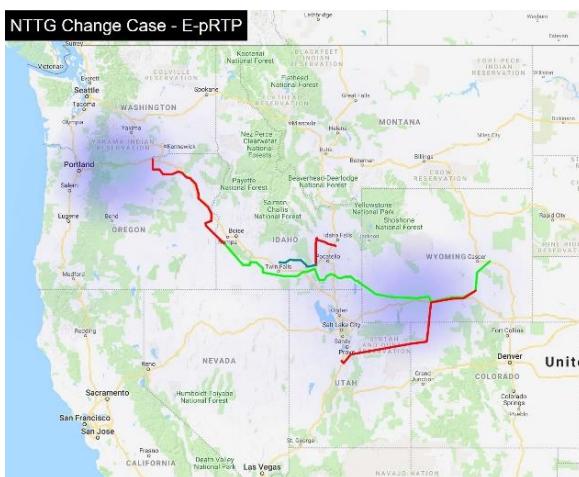

D. High Westbound Idaho-Northwest case results

485

The flow pattern extracted for this case did not meet the objectives for this case, so further study of the case was dropped.

487 **E. High Tot2/COI/PDCI Case results**

488 The E-Null case results depicted in Figure 37 are similar to the Fv2 case in Wyoming. The stress
 489 elsewhere in the NTTG footprint appears to less. The remaining issues shown in Figure 38, the
 490 E-pRTP case, are local overloads in the Bonneville Dam area and N-2 transformer overload at the
 491 Jim Bridger Power Plant.

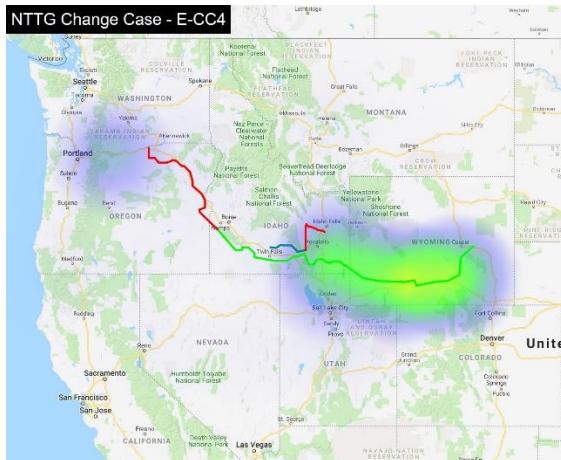


496 **Table 24**

497 **Case: E-Null**

Zones	Count of		Count of	
	High Voltage	Low Voltage	Overload	Total
Pac N of Path C			6	30
Soda Springs_ID			1	5
The Dalles_OR			2	10
Mona_UT			1	5
Sigurd_UT		8	2	26
Upalco_UT			1	5
Carbonville_UT			1	5
Garrison_MT	1			1
Point of Rocks_WY	13	19	58	341
Bridger_WY			2	10
Hanna_WY	5	188	28	521
Miners_WY			6	30
Medicine Bow_WY			1	5
Rock River_WY	2	14	1	35

498 Times 1 Times 2 Times 5


503 **Table 25**

504 **Case: E-pRTP**

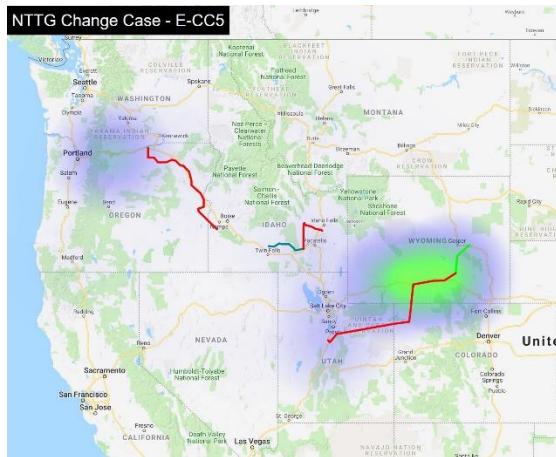
Zones	Count of		Count of	
	High Voltage	Low Voltage	Overload	Total
The Dalles_OR			2	10
Point of Rocks_WY			1	5

505 Times 1 Times 2 Times 5

497 Without Gateway South in E-CC4, that configuration performs poorly. Similarly, without
 498 Gateway West in E-CC5, that configuration has similar issues.

Case: E-CC4

Zones	Count of	Count of	Count of	Total
	High Voltage	Low Voltage	Overload	
Soda Springs_ID				15
The Dalles_OR				10
Logan_UT				5
Point of Rocks_WY		24	11	103
Hanna_WY		4	2	18
Miners_WY			2	10


Times 1 Times 2 Times 5

499

500

Figure 39

Table 26

Case: E-CC5

Zones	Count of	Count of	Count of	Total
	High Voltage	Low Voltage	Overload	
The Dalles_OR				10
Mona_UT	1			1
Point of Rocks_WY		8	5	41
Hanna_WY		2	1	9
Miners_WY			1	5

Times 1 Times 2 Times 5

501

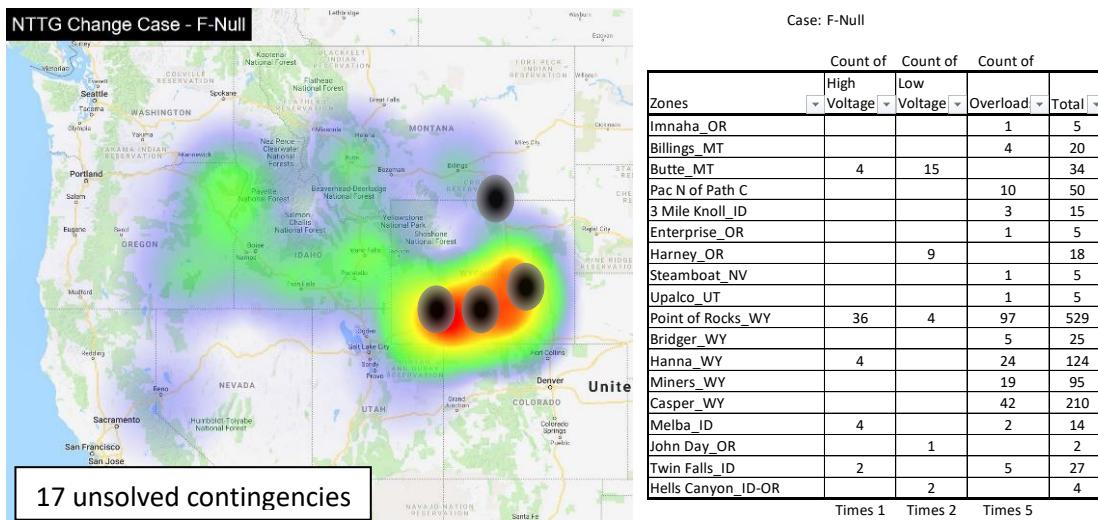
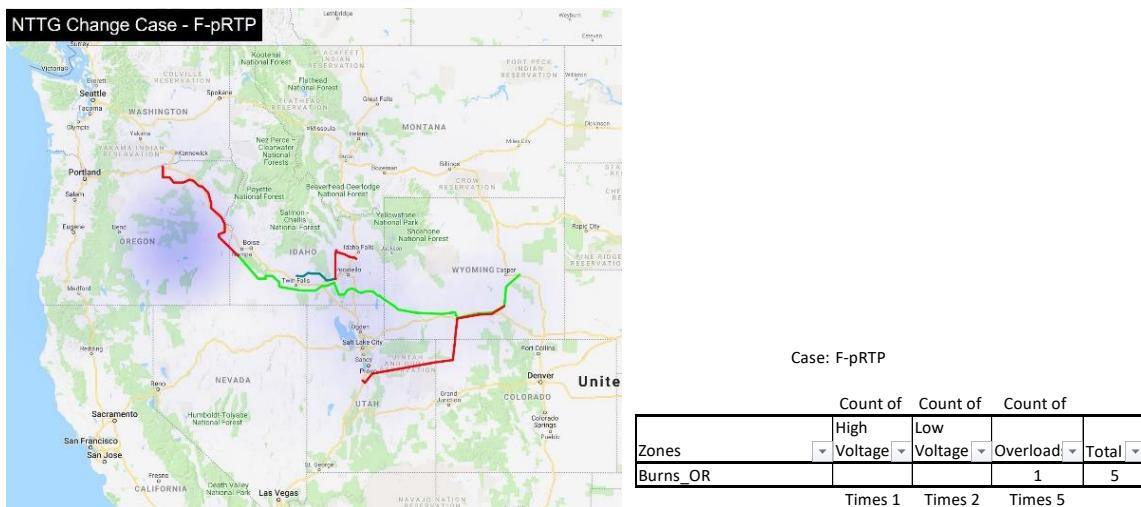

502

Figure 40

Table 27

503 **F. High Wyoming Wind Case results**

504 The F-Null case results depicted in Figure 41 with the wind production at the 2,707 MW level,
 505 indicate that its performance is worse than the heavy southern Idaho export case. When the
 506 pRTP facilities are added in Figure 42, the only remaining problems are with the rating of the
 507 Burns series capacitor bank. This bank is due for replacement since it has reached the end of its
 508 useful life. Its future rating has not been determined but the parties will consider these studies
 509 in establishing its new rating.



510

511

Figure 41

Table 28

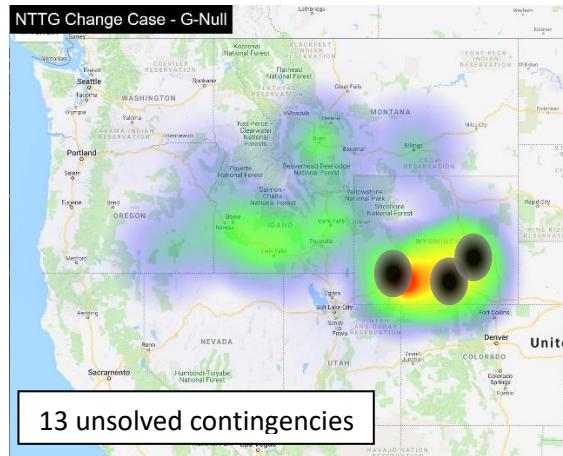
512

513

Figure 42

Table 29

514
515
516


The 2707 MW wind level represents a condition where over 1020 or 11.6% of the hours exceeded this level. The original target level of 2655 MW was 90% of the peak generated energy.

517

G. High Borah West Case results

518

The G-Null case results depicted in Figure 43 are similar to the E and F cases in Wyoming.

Case: G-Null

Zones	Count of		Overload	Count of
	High Voltage	Low Voltage		
Billings_MT			4	20
Butte_MT	4	19		42
Pac N of Path C		3	7	41
Harney_OR		8		16
Point of Rocks_WY	25		63	340
Hanna_WY	11		10	61
Miners_WY			10	50
Casper_WY			6	30
Melba_ID	2			2
Twin Falls_ID	1		7	36
Mountain Home_ID			2	10
Hells Canyon_ID-OR		2		4

Times 1 Times 2 Times 5

519

520

Figure 43

Table 30

Case: G-pRTP

Zones	Count of		Overload	Count of
	High Voltage	Low Voltage		
Davenport_WA			1	5
Burns_OR			1	5

Times 1 Times 2 Times 5

521

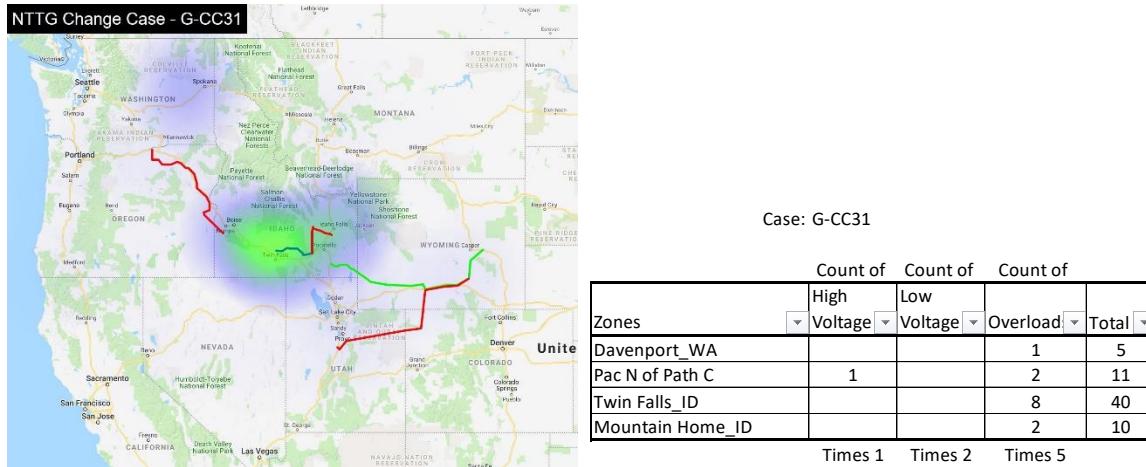
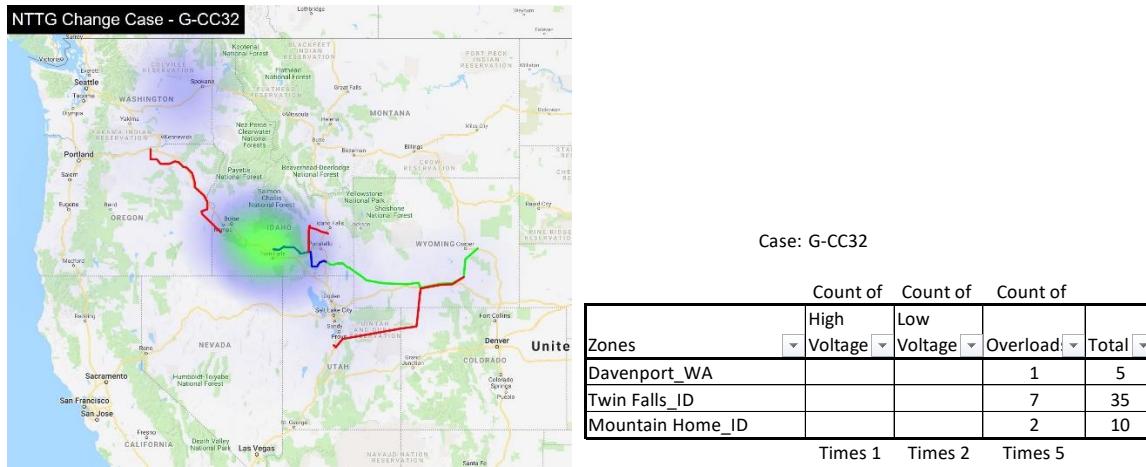

522

Figure 44

Table 31

523

524 The G-CC31 configuration shown in Figure 45 performs poorly without the Populus-Cedar Hill-
 525 Hemingway segment. Connecting Populus to Borah in G-CC32 helps slightly but the Populus-
 526 Cedar Hill-Hemingway segment is still needed at these transfer levels.



527

528

Figure 45

Table 32

529

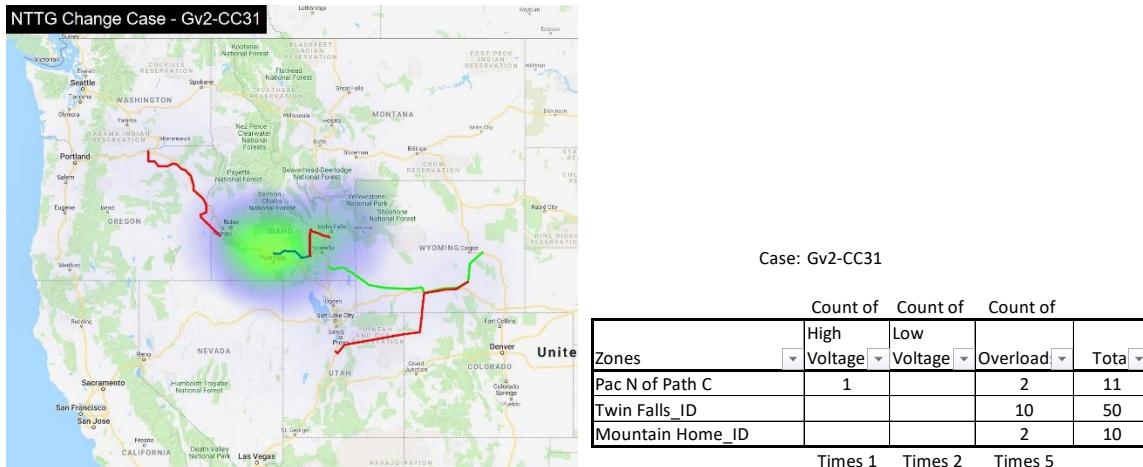

530

Figure 46

Table 33

531

532 In the G case without NTTG footprint exports (Gv2) shown in Figure 47, the performance of the
 533 case is not significantly different than Figure 45. The Populus-Cedar Hill-Hemingway segment is
 534 needed to transport power within the NTTG footprint and is not dependant on exporting energy
 535 outside NTTG.

536

537

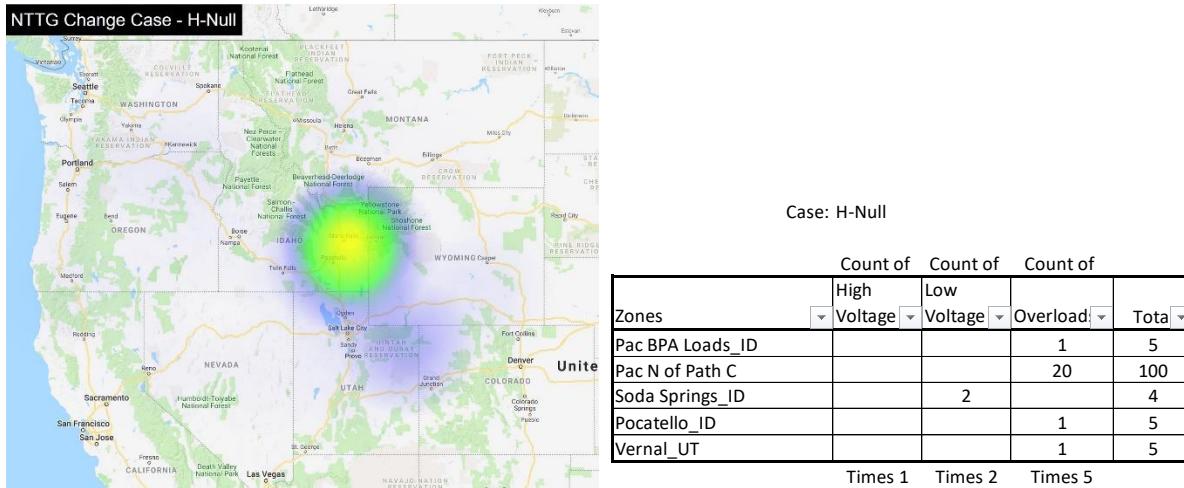
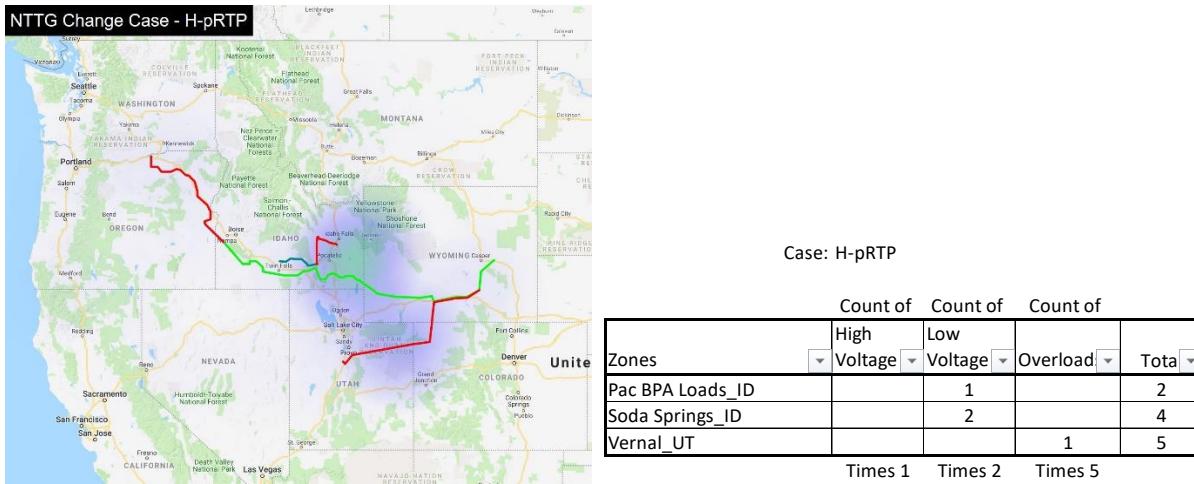

Figure 47

Table 34

538

H. High NTTG Footprint Import results

539 In the High NTTG footprint import case, again the most significant issue is related to the integration
 540 of the new Antelope Project resources. The remaining issues in the pRTP case shown in Figure 49
 541 are very slight overload near Vernal and low N-1 voltages in the Three Mile Knoll area.



542

543

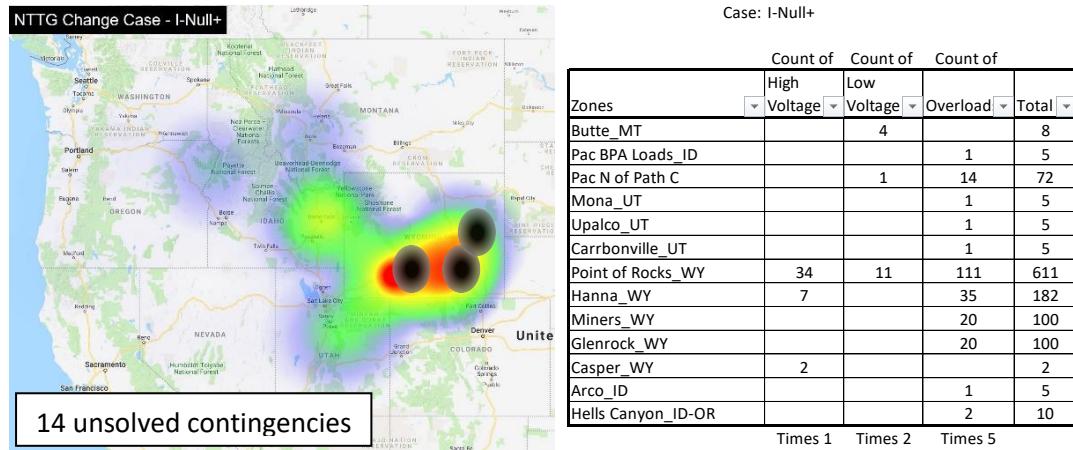
Figure 48

Table 35

544

545

Figure 49

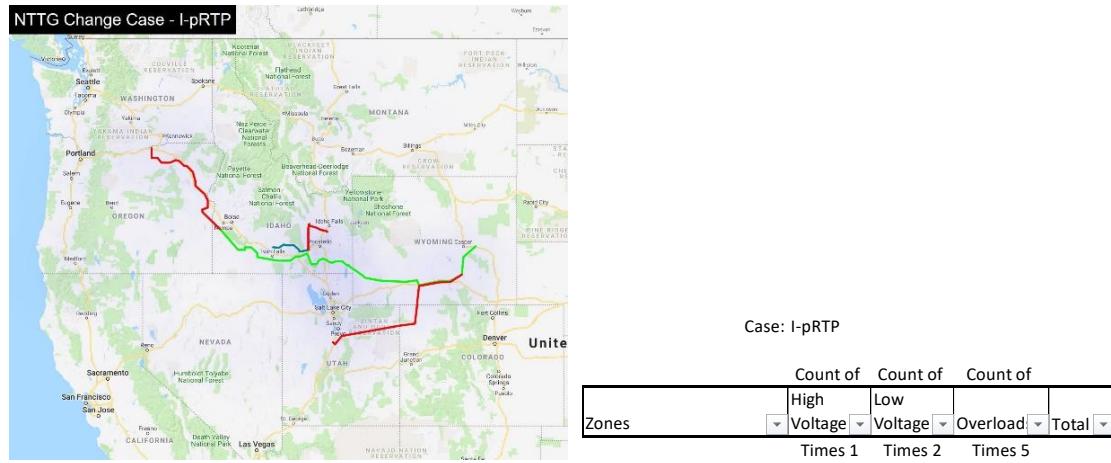

Table 36

546

547

I. High Aeolus West and South Case results

548 The I Null case could not be solved without some Wyoming transmission facility additions. The I
 549 Null+ (including those additions) case results are depicted in Figure 50.



550

551

Figure 50

Table 37

552

553

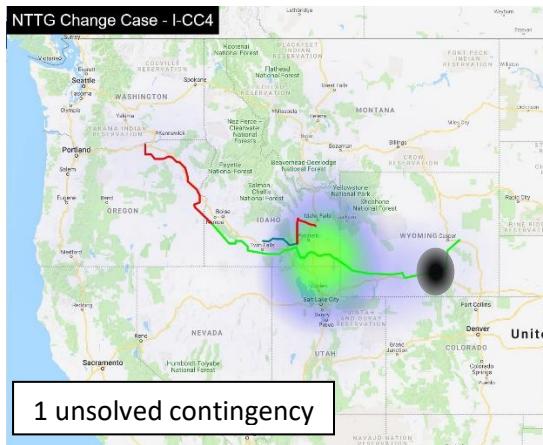

Figure 51

Table 38

554

555

556 Case I-CC4 and I-CC5 check to see if either Gateway project, West or South, can perform
 557 adequately without the other. Both cases have an unsolved contingency indicating the both
 558 configurations are well beyond their capability at this stress level.

Case: I-CC4

Zones	Count of	Count of	Count of	Total
	High Voltage	Low Voltage	Overload	
Pac N of Path C	1			1
Soda Springs_ID				2
Logan_UT				1
North Logan_UT				1
Point of Rocks_WY	1			1

Times 1 Times 2 Times 5

559

560

Figure 52

Table 39

Case: I-CC5

Zones	Count of	Count of	Count of	Total
	High Voltage	Low Voltage	Overload	
Times 1				
Times 2				
Times 5				

561

562

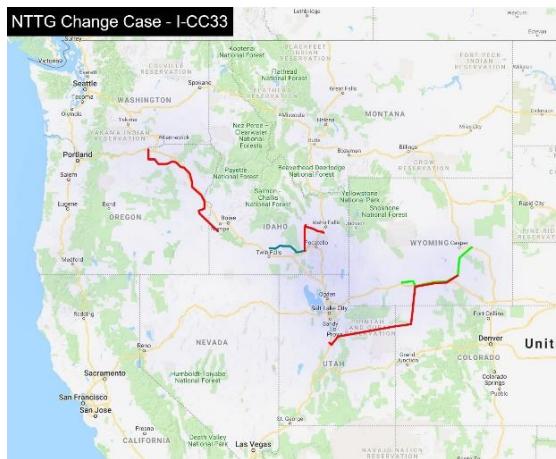

Figure 53

Table 40

563

564

In the case of CC4 (Figure 52, Gateway West without Gateway South) and CC5 (Figure 53, Gateway South without Gateway West), perform poorly for loss of either Gateway segments.

Case: I-CC33

Zones	Count of	Count of	Count of	
	High Voltage	Low Voltage	Overload	Total
Times 1				
Times 2				
Times 5				

565

566

Figure 54

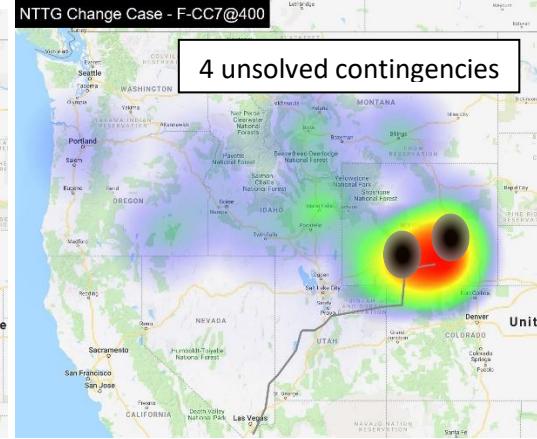
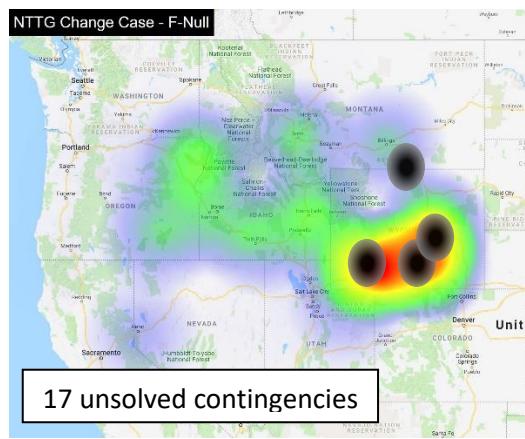
Table 41

567 In Case I-CC33 (Figure 54), the western portions of Gateway West (west of Bridger) were
 568 excluded and replaced with the Gateway South project. This case performs satisfactorily,
 569 however, the Bridger dispatch level (885 MW) is low.

570 J. 2029 Bridger Retirement Sensitivity

571 Sensitivity cases were performed on the exported hours where all four Bridger Units were
572 dispatched above 1500 MW (3 Unit operation). This occurred in the Heavy Summer case (Case
573 A), the Heavy Winter case (Case B), the Idaho-Northwest Export case (Case D, not studied), the
574 TOT2/COI/PDCI case (Case E) and the High Wyoming Wind case (Case F). In the other cases
575 (Cases C, G, H and I), the Bridger dispatch was below 1500 MW and those conditions would not
576 be impacted by a Bridger Unit Retirement.

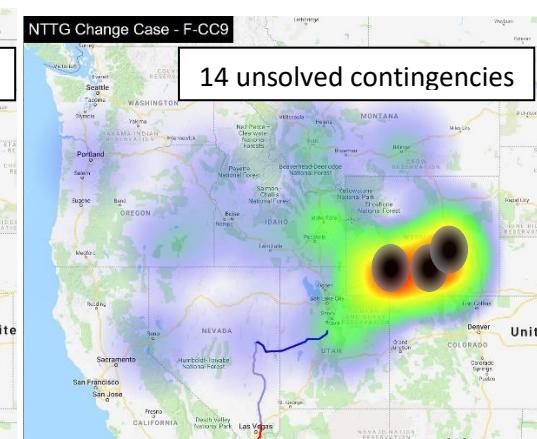
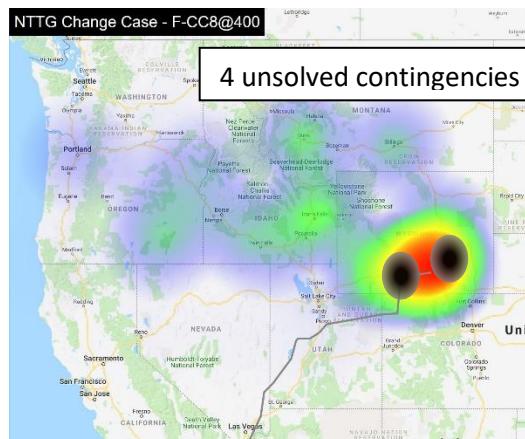
577 Case A, B, E and F were adjusted to remove Bridger Unit 1 from service. In the Heavy Summer
578 and Heavy Winter conditions (Cases A and B), the unit output was replaced by additional Coulee
579 dispatch, as the Idaho and PacifiCorp non-renewable resources were already fully committed.
580 For Cases E and F, the Idaho and PacifiCorp East control areas resources were adjusted on an
581 ownership basis (2/3 PacifiCorp (east), 1/3 Idaho Power). In all four cases, the phase shifter
582 between the 345 kV system and the 500 kV system at Bridger was adjusted to cause an
583 increased 400 MW of flow from the 500 kV to the 345 kV systems, unloading the 500 kV system.



584 For Cases A and B there was no appreciable change in outage performance, since the Wyoming
585 Wind transfers out of the state were relatively light. In Case E, a slight reduction in a Bridger N-2
586 Transformer outage overload occurred, yet the reduction would not change the need for
587 mitigation. Similar to Case E, the Case F change in performance was minimal.

588

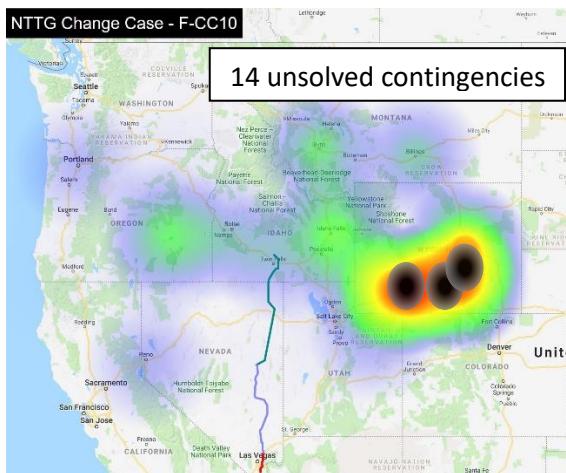
K. Interregional Transmission Projects

589
590
591
592
593
594
595
596



The Interregional Transmission Projects were analyzed to determine whether an ITP alone or in combination with the other ITPs and/or the Non-Committed projects could, from a regional perspective, satisfy NTTG's transmission needs on a regional or interregional basis more efficiently or cost effectively than through local planning processes. The ITPs were added to the Null cases without any additional resources to serve NTTG load beyond those resources identified in the Quarter 1 data submittals. The ITP projects were tested with Cases A, B, C, E, F, and I. The high Wyoming wind case results are shown graphically below in Figure 55 through Figure 59.

597
598

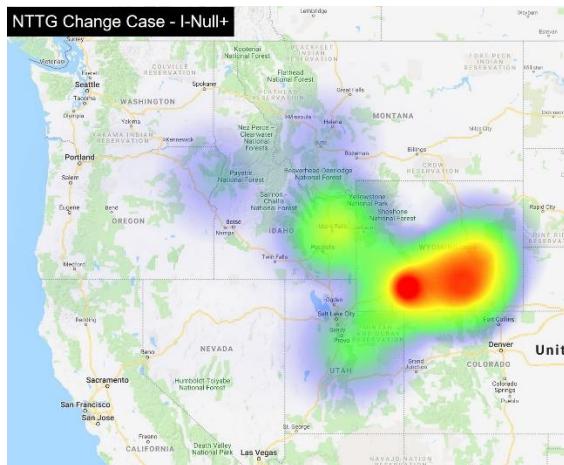
Figure 55


Figure 56

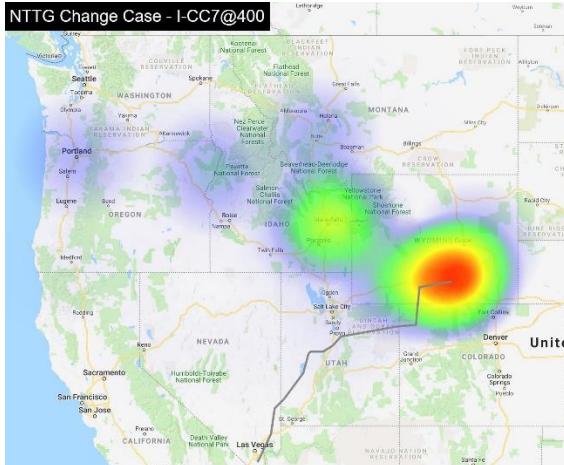
599
600

Figure 57

Figure 58


601

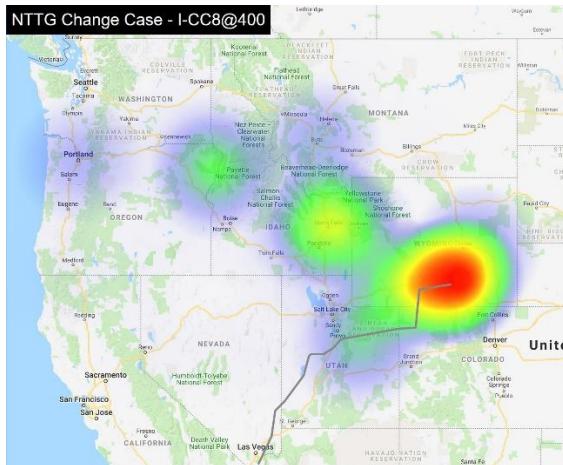
602


Figure 59

603

For the High Aeolus West and South case:

NTTG Change Case - I-CC7@400

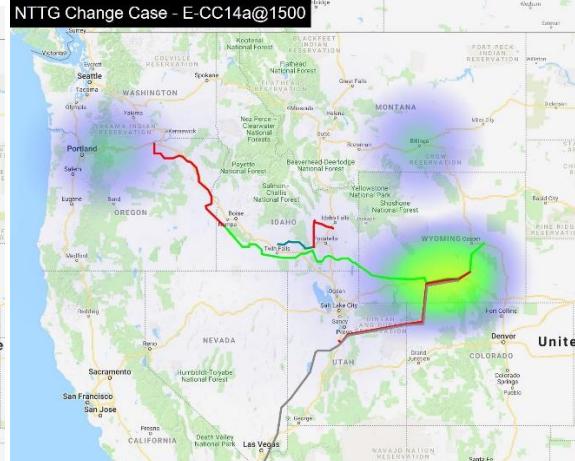
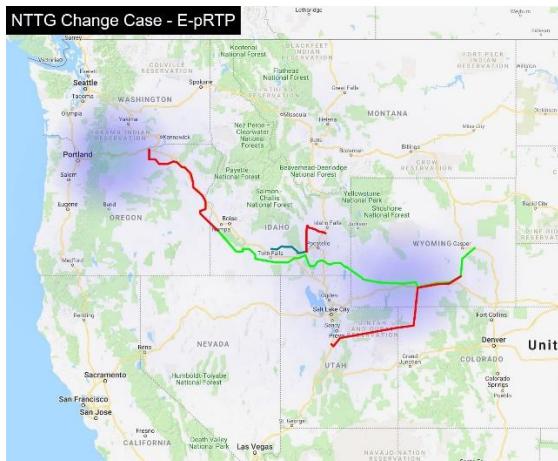


604

605

Figure 60

Figure 61



606

607

Figure 62

608 Note that, similar to the I-Null case, the CC9 and CC10 cases were not able to be solved without
 609 additional reinforcements in Wyoming. The ITPs do not provide the NTTG footprint with
 610 regional benefits by significantly reducing performance issues or displacing NTTG Non-
 611 Committed projects.

612 The dRTP was also analyzed to determine whether it is capable of supporting the interregional
 613 resource transfers proposed by the ITPs:

614

615

Figure 63

Figure 64

616

617

Figure 65

Figure 66

618 Each of the ITPs interfaces differently with the additional wind resources in Wyoming. In the
 619 TWE E-CC14a case (Figure 64), the case was run not tripping the wind resource for DC line
 620 outages. In order to avoid performance issues, the most of the 1,500 MW of resources would
 621 need to be tripped. Additionally, in these studies, the DC terminal was modeled by connecting
 622 the DC terminal to the existing 230 kV system, even when the Gateway West and South 500 kV
 623 projects were modeled in the case. Adding a 500 kV interface to the DC terminal would likely
 624 improve the Wyoming performance issue. Combinations of the ITPs projects were also studied
 625 with resource additions up to 4,500 MW.

626

Figure 67

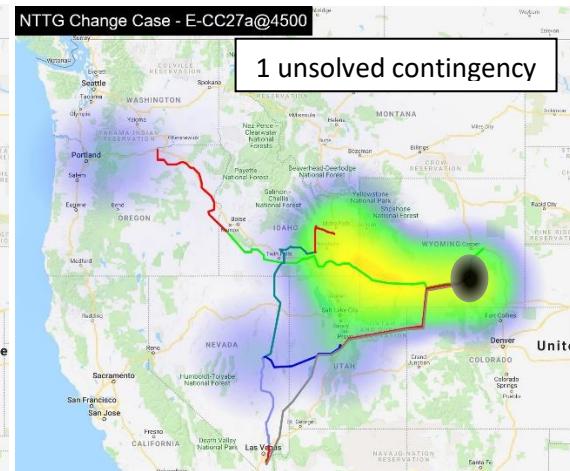


Figure 68

627

Again, Change Case E-CC27a in Figure 67 has the same issue as Change Case E-CC14a in Figure 64. Given the relatively long distances of the ITPs, the local integration performance issues in Wyoming are solvable.

631

VI. Impacts on Neighboring Regions

632

The TWG monitored the impacts of projects under consideration for the Draft Regional Transmission Plan on neighboring Planning Regions through each Change Case. The TWG found that the IRTP or the alternative Change Case plans did not impact neighboring Planning Regions.

635

VII. Reliability Conclusions

636

Based on the above study results, the TWG concludes that Change Cases pRTP and the IRTP satisfy the NTTG reliability criteria. The NTTG area is not reliably served in the year 2028 without including the following Non-Committed regional projects:

639

- Boardman to Longhorn (formerly Hemingway)
- The Energy Gateway projects including segments:
 - Windstar-Aeolus 230 kV
 - Aeolus-Clover 500 kV
 - Aeolus-Anticline 500 kV
 - Anticline-Populus 500 kV
 - Populus-Cedar Hill-Hemingway 500 kV
 - Borah-Midpoint 345 kV to 500 kV conversion
- Antelope Transmission Project including:
 - Antelope – Borah 345 kV
 - Antelope – Goshen 345 kV
 - Antelope 345/230 kV transformers and interconnection facilities

651 The ITPs were evaluated to determine whether one or more ITP would defer or replace NTTG's
 652 Non-Committed projects. It was determined that none of the ITPs solve NTTG's reliability
 653 performance issues and, as such, have not been included in the NTTG dRTP.

654 **VIII. Economic Evaluations**

655 To determine which of the transmission plans (i.e., iRTP or pRTP) described above is the more
 656 cost effective, the calculation and evaluation of certain economic metrics is required. These
 657 transmission plans, incorporate some or all of the Non-Committed projects and Alternative
 658 Projects as may be necessary to satisfy NTTG's reliability performance criteria. Therefore, after
 659 determining the transmission plan that is more "efficient or cost effective" the Non-Committed
 660 projects of that plan will be included in the dRTP. From the Biennial Study Plan, the economic
 661 metrics to be evaluated are the capital related costs, NTTG footprint losses, and reserves. The
 662 economic evaluations are discussed below.

663 **A. Capital Related Cost Metric**

664 Development of the capital related cost metric required two steps to complete. The first step
 665 was to validate the Project Sponsor's Q1 submitted project capital cost. The validation was
 666 completed by comparing the Project Sponsor's submitted capital cost to the output results of a
 667 WECC Transmission Capital Cost Calculator, an MS Excel spreadsheet. If the submitted capital
 668 costs varied from the Calculator output by 20% or more, the TWG worked with the Project
 669 Sponsor to resolve the cost difference. If the difference could not be resolved, the TWG
 670 determined the appropriate cost to apply in the study process. If the Project Sponsor did not
 671 submit project capital cost, then the TWG developed the project's capital cost using the
 672 Transmission Capital Cost Calculator output. The analysis results from this first step are shown
 673 in Table 42.

Project Capital Cost Estimate
2018\$

Non-Committed Projects				
Range	B2H	GW South	GW West iRTP	Alt Proj GW West pRTP
80%	\$1,128,277,367	\$1,282,740,293	\$2,910,441,363	\$2,337,522,943
WECC Calculator	\$1,410,346,708	\$1,603,425,366	\$3,638,051,703	\$2,921,903,678
120%	\$1,692,416,050	\$1,924,110,439	\$4,365,662,044	\$3,506,284,414
Sponsor Estimate	\$1,183,092,750	Not Provided	Not Provided	Not Provided
Capital Cost Used	\$1,183,092,750	\$1,603,425,366	\$3,638,051,703	\$2,921,903,678
Plan Capital Cost				
iRTP	\$1,183,092,750	\$1,603,425,366	\$3,638,051,703	\$6,424,569,819
pRTP	\$1,183,092,750	\$1,603,425,366	\$3,638,051,703	\$5,708,421,794
pRTP less iRTP				-\$716,148,025

675 **Table 42 Validated Cost Estimates**

676 The second step is to develop the levelized capital related cost metric using the capital cost
 677 results described above. First, the annual capital related cost was computed for a 40 year
 678 revenue requirement time period using a WECC Capital Cost Calculator. The annual capital
 679 related cost is the sum of annual return, depreciation, taxes other than income, operation and

680 maintenance expense, and income taxes (assumed 21%). A future escalation rate of 2.3% was
 681 applied to escalate and de-escalate costs from 2018 to the in-service year and a weighted cost
 682 of capital of 8.5% was estimated for all projects assuming 50% debt (@6%) and 50% equity
 683 (@11%) structure. The depreciation period was assumed to be 40 years for all projects. Next,
 684 the total present value of annual capital related costs was computed using a discount rate of
 685 8.5% for all projects. Next the levelized²⁹ net present value annual capital related costs for the
 686 iRTP and the pRTP plans were computed. Table 43 provides that levelized capital related cost
 687 for the iRTP and the pRTP.

Plan Capital Related Cost ("CRC") Metric

11/16/2018

2018\$	B2H	GW South	GW West iRTP	GW West pRTP	Plan CRC
In-Service Year	2026	2024	2024	2024	
Project Capital Cost	\$1,183,092,750	\$1,603,425,366	\$3,638,051,703	\$2,921,903,678	
NPV CRC	\$1,882,583,955	\$2,551,433,830	\$5,789,011,693	\$4,649,448,644	
Annual* CRC	\$166,386,546	\$225,500,839	\$511,644,464	\$410,927,596	
iRTP Lvl CRC	\$166,386,546	\$225,500,839	\$511,644,464		\$903,531,849
pRTP Lvl CRC	\$166,386,546	\$225,500,839		\$410,927,596	\$802,814,981
pRTP less iRTP					(\$100,716,868)

* Levelized Payment over 40 Yr Economic Life and 8.5% Discount Rate

Table 43 Estimated Capital Related Cost Estimates

B. Energy Loss Metric

1. Background and Method

The Energy Loss Metric is used to capture the change in energy generated, based on system topology, to serve a given amount of customer load. The study year was 2028. Using Production Cost Modeling software, the NTTG footprint Balancing Authority Area ("BAA") annual MWh losses for the iRTP and pRTP were calculated based on hourly load, generation and export\import flows on external tie lines. A reduction in annual energy losses represents a benefit because less energy is required to serve the same load. The annual BAA MWh loss value was then multiplied by a 2028 BAA Average Locational Marginal Price \$/MWh, extracted from the Production Cost Model to produce an annualized dollar cost of energy losses.

2. Results

The Table 44 summarizes the energy loss benefit analysis for each of the affected NTTG balancing areas.

²⁹ Using the same economic parameters described above.

PCM Loss Detail

11/16/2018 2018\$		pRTP BAA Energy Losses		iRTP BAA Energy Losses		Cost of Annual Losses Savings = pRTP - iRTP
Area	Average LMP for Loads (\$/MWh)	Calculated Losses (MWh)	Cost of Annual Losses \$	Calculated Losses (MWh)	Cost of Annual Losses \$	Annual Losses Cost Savings \$
IPFE	24	63,996	\$1,514,519	63,923	\$1,512,805	\$1,714
IPMV	24	147,161	\$3,600,421	146,991	\$3,596,265	\$4,156
IPTV	25	352,993	\$8,822,441	352,589	\$8,812,342	\$10,100
NWMT	20	90,135	\$1,791,788	90,032	\$1,789,744	\$2,044
PACW	28	565,556	\$15,673,912	564,909	\$15,655,980	\$17,932
PAID	22	138,601	\$3,016,536	138,443	\$3,013,096	\$3,439
PAUT	21	959,602	\$20,153,366	958,504	\$20,130,299	\$23,066
PAWY	21	222,515	\$4,735,250	222,260	\$4,729,839	\$5,411
PGE	29	639,392	\$18,300,719	638,660	\$18,279,768	\$20,951
NTTG Total		3,179,951	\$77,608,952	3,176,311	\$77,520,138	\$88,813

Table 44 : Average Energy Loss

Table 44 above shows that from a loss perspective, the pRTP case has more energy losses than the iRTP and as such is the less efficient case. Losses are higher in the pRTP because the electrical flows in the iRTP case were redistributed to the new higher voltage, lower impedance lines. Incremental losses in PCM are a function of topology, impedance and injections. As load and generation dispatch is changed hourly, so does incremental losses.

C. Reserve Metric

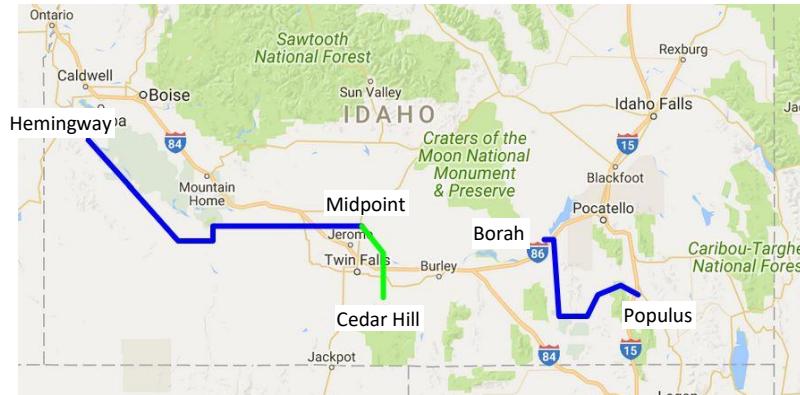
The reserve metric evaluates the opportunities for two or more parties to economically share a generation resource that would be enabled by transmission. The metric is a 10-year incremental look at the increased load and generation additions in the NTTG footprint and the incremental transmission additions that may be included in the dRTP. In the study cycle, the Gateway West iRTP, Gateway West pRTP, Gateway South and B2H projects were included in the analysis. To evaluate these projects, the NTTG footprint was segmented into zones.

The metric assumes that the parties within the zones share a pro-rata portion of a simple cycle combustion turbine (priced at \$800/kw). A preliminary calculation of the reserve metric found that none of the positive reserve benefits exceed \$750,000/year over the reserve sharing ability of the existing transmission system. More importantly, there is not a reserve sharing distinction between the pRTP and the iRTP; both plans can support all the positive reserve combinations. Since the iRTP and pRTP transmission plans could contain the same benefit value, the change in Reserve metric does not factor into the dRTP selection decision.

D. Metric Analysis Conclusion – Incremental Cost Comparison

The sum of the annual capital related cost metric, loss metric (monetized) and reserve metric (monetized) calculate the incremental cost for the iRTP and the pRTP. The set of projects within the iRTP or pRTP plans with the lowest incremental cost, after adjustment by the plan's effects on neighboring regions, will then be incorporated within the dRTP.

Annual Incremental Cost
2018\$


11/16/2018	iRTP	pRTP	pRTP less iRTP
Capital Related Cost	\$903,531,849	\$802,814,981	(\$100,716,868)
Losses - Monitized	\$77,520,138	\$77,608,952	\$88,814
Reserve - Monitized	(\$750,000)	(\$750,000)	\$0
Incremental Cost	\$980,301,987	\$879,673,933	(\$100,628,054)

730

731 **Table 45 Change Case Metric Estimate Difference from iRTP**732 **IX. Final Regional Transmission Plan**

733 Based on the reliability and economic conclusions discussed above, the more efficient or cost
 734 effective plan, based on the studies in this report, is the pRTP which is a staged variant of the
 735 iRTP.

736

737

738

Figure 69 - RTP segments not included in dRTP

739

740 NTTG's dRTP is shown in Figure 70 was selected after a rigorous technical Change Case reliability
 741 analysis of NTTG TP's rollup of their local area plans, assumption and Non-Committed regional
 742 transmission projects augmented with stakeholder interregional transmission projects. This
 743 technical analysis was followed by an economic metric analysis that selected NTTG's more
 744 efficient or cost effective Regional Transmission Plan

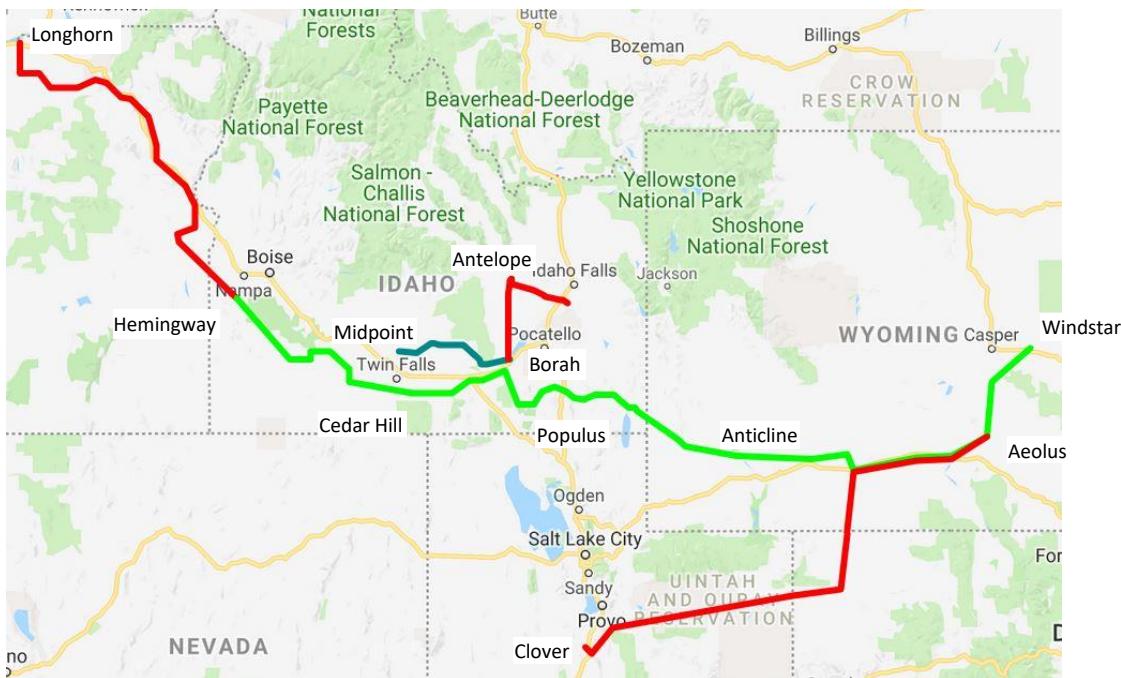


Figure 70 - dRTP Projects

747 X. Lessons learned in Q1 through Q4

748 A. Study Plan changes

- 749 • The Study Plan was updated to reflect that for the loss metric, only PCM results would
 750 be used in the metric analysis.

751 B. Data submittals in Q1 and Q5

752 The data submittal form was revised to better capture the desired data. The changes include:

- 753 • It was observed that some resource retirements were not submitted. The data
 754 submittal form was updated to indicate that retirements should be provided.
- 755 • Non-transmission alternative examples were added.

756 XI. Robustness sensitivity studies - Q5, Q6

757

758 **XII. Public Policy Consideration - Q5, Q6**

759

760 **XIII. Cost Allocation Evaluation - Q5, Q6**

761

762

763

Appendix A Public Policy Requirements

764 This attachment includes all Public Policy Requirements information that was available at the time the
 765 revised NTTG Biennial Study Plan was developed:

State	Legislation	Requirement or Goal
California	<ul style="list-style-type: none"> Senate Bill 1078 (2002) Assembly Bill 200 (2005) Senate Bill 107 (2006) Senate Bill 2 First Extraordinary Session (2011) Senate Bill 350 (2015) Senate Bill 100 (2018) 	<ul style="list-style-type: none"> 20% by December 31, 2013 25% by December 31, 2016 33% by December 31, 2020 44% by December 31, 2024 52% by December 31, 2027 60% by December 31, 2030 and beyond <p>Based on the retail load for a three- or four-year compliance period</p>
Idaho	<ul style="list-style-type: none"> No RPS Requirement 	<ul style="list-style-type: none">
Montana	<ul style="list-style-type: none"> SB 45 2013 SB 325 2013 	<ul style="list-style-type: none"> 5% by 2008-09 14% by 2010-14 15% by 2015 and Beyond
Oregon	<ul style="list-style-type: none"> Senate Bill 838 Oregon Renewable Energy Act (2007) House Bill 3039 (2009) House Bill 1547-B (2016) 	<ul style="list-style-type: none"> 5% by December 31, 2011 15% by December 31, 2015 20% by December 31, 2020 27% by December 31, 2025 35% by December 31, 2030 45% by December 31, 2035 50% by December 31, 2040 <p>Based on the retail load for that year</p>
Utah	<ul style="list-style-type: none"> Senate Bill 202 (2008) 	<ul style="list-style-type: none"> Goal of 20% by 2025 (must be cost effective) Annual targets are based on the adjusted^[1] retail sales for the calendar year 36 months prior to the target year
Washington	<ul style="list-style-type: none"> Initiative Measure No. 937 (2006) 	<ul style="list-style-type: none"> 3% by January 1, 2012 9% by January 1, 2016 15% by January 1, 2020 and beyond Annual targets are based on the average of the utility's load for the previous two years
Wyoming	<ul style="list-style-type: none"> No RPS Requirement 	

766

^[1] Adjustments for generated or purchased from qualifying zero carbon emissions and carbon capture sequestration and DSM.

767 **Appendix B 2028 ADS Case Resource Changes**

768 Resource Additions and Removals to the 2028 Anchor Data Set

769 Changes to the WECC 2028 ADS Case include:

770 • Retirements

- 771 ○ Dave Johnson 1, 2, 3 and 4
- 772 ○ Naughton 3 Gas Unit (converted coal unit)
- 773 ○ Valmy 1 and 2

774

775 • Additions

- 776 ○ Idaho Power
 - 777 ■ Solar – 4 Projects, 24 MW
- 778 ○ Northwestern
 - 779 ■ Solar – 1 Project, 80 MW
 - 780 ■ Wind – 5 Projects, 540 MW
- 781 ○ PacifiCorp – Oregon
 - 782 ■ Solar – 13 Projects, 118 MW
 - 783 ■ Wind – 6 Projects, 60 MW
- 784 ○ PacifiCorp – Utah
 - 785 ■ Solar – 2 Projects, 106 MW
 - 786 ■ Wind – 1 Project, 79 MW
- 787 ○ PacifiCorp – Wyoming
 - 788 ■ Solar – 1 Projects, 58 MW
 - 789 ■ Energy Vision 2020 Wind – increased from 1100 MW to 1311 MW
 - 790 ■ Wind – 1 Project, 320 MW

791

792

Appendix C Path Flows

793

Path Flows in a selected number of Power Flow Change Cases

NTTG Case Path Flows		Interface MW Flow											
Number	Name	MW Forward Limit	MW Reverse Limit	Heavy Summer - Case A-v1d	Heavy Winter - Case B-v1c	High Eastbound Idaho-NW Case C-v1f	High Idaho-NW export - Case D-v1b	High Tot2/COI/ PDCI Case E-v1d	High Wyoming Case F-v1c	High Wind - Case G-v1e	High Borah Case H-v1b	High NTTG Footprint Case I-v1c	High Aeolus West&South Case I-v1c
1	ALBERTA - BRITISH COLUMBIA	1000	-1200	-863	-261	-491	-329	410	-456	368	-297	-494	0
2	ALBERTA - SASKATCHEWAN	150	-150	0	0	0	0	0	0	0	0	0	0
3	NORTHWEST - CANADA	3000	-3150	-1622	-431	508	-395	-14	385	405	-1287	498	
4	WEST OF CASCADES - NORTH	10200	-10200	3011	6529	4794	3475	6038	4564	4034	4049	5793	
5	WEST OF CASCADES - SOUTH	7200	-7200	3241	4831	2598	3425	3688	3256	3076	4060	3210	
6	WEST OF HATWAI	4277		-525	-160	639	-169	2129	546	41	29	1357	
8	MONTANA - NORTHWEST	2200	-1350	-320	410	-111	319	1239	1106	826	220	551	
9	WEST OF BROADVIEW	2573		826	1147	209	936	1326	1502	1239	1016	895	
10	WEST OF COLSTRIP	2598		1577	1580	856	747	1775	1537	1354	1556	1474	
11	WEST OF CROSSOVER	2598		1609	1645	678	1099	1690	1751	1543	1620	1361	
14	IDAHO - NORTHWEST	3400	-2250	-1117	1368	-1970	1415	-428	2827	2562	-949	-984	
15	MIDWAY - LOS BANOS	4800	-2000	-105	2357	-1461	2491	-1214	3333	4123	1280	-716	
16	IDAHO - SIERRA	500	-360	-115	-101	115	-40	179	-50	-123	-171	110	
17	BORAH WEST	3600		61	1635	-843	2089	497	3367	3403	-110	-198	
18	MONTANA - IDAHO	337	-256	159	-37	170	-159	176	-236	-253	84	151	
19	BRIDGER WEST	2400	-600	1660	1672	532	1754	1679	1881	1497	817	729	
20	PATH C	2250	-2250	1332	99	1507	507	1731	-428	-882	731	1776	
25	PACIFICORP/PG&E 115 KV INTERCON.	100	-45	61	59	63	62	60	60	59	60	63	
26	NORTHERN - SOUTHERN CALIFORNIA	4000	-3000	1635	-2046	957	-1759	601	-3039	-3897	304	187	
27	IPP DC LINE	2400	-1400	1242	1288	2186	1849	2406	2159	1240	1530	2406	
28	INTERMOUNTAIN - MONA 345 KV	1400	-1200	389	265	-489	-253	-812	-591	275	260	-760	
29	INTERMOUNTAIN - GONDER 230 KV	200		-34	41	-38	0	0	41	80	-60	-51	
30	TOT 1A	650		-3	144	13	52	-109	169	7	282	-78	
31	TOT 2A	690		105	125	16	36	19	8	111	25	15	
32	PAVANT, INTRMTN - GONDER 230 KV	440	-235	-63	70	-53	59	23	107	146	-108	-64	
33	BONANZA WEST	785		-226	-316	-228	-343	-300	-373	-257	-384	-303	
34	TOT 2B	780	-850	-58	-62	103	-72	43	26	2	-36	16	
35	TOT 2C	600	-580	-20	2	47	72	174	144	65	-195	18	
36	TOT 3	1680		928	661	365	960	1231	931	609	339	1527	
37	TOT 4A	810		-95	-37	46	-18	101	97	42	25	179	
38	TOT 4B	680		-7	136	-40	154	-84	46	69	133	-99	
39	TOT 5	1680		461	390	170	339	136	335	338	291	537	
40	TOT 7	890		223	175	102	233	230	246	177	43	377	
41	SYLMAR - SCE	1600	-1600	-270	1422	108	54	248	565	935	-19	45	
65	PACIFIC DC INTERTIE (PDCI)	3100	-3100	1652	1121	2781	125	1686	2241	2241	497	2781	
66	COI	4800	-3675	2072	1802	4296	288	4767	-378	-855	914	3755	
71	SOUTH OF ALLSTON	3980	-1115	2299	1430	709	672	667	106	146	1328	700	
73	NORTH OF JOHN DAY	7700	-7700	3584	3185	4168	1144	4321	278	545	2932	4371	
75	MIDPOINT - SUMMER LAKE	1500	-550	-149	949	-159	871	596	1308	1231	-121	165	
76	ALTURAS PROJECT	300	-300	176	110	180	153	177	101	87	175	178	
77	CRYSTAL - ALLEN	950		131	18	126	78	3	76	88	145	108	
80	MONTANA SOUTHEAST	600	-600	238	-191	377	-510	300	-286	-253	128	172	
83	MATL	325	-300	-243	-266	-327	-299	-264	-303	-310	-177	-325	

794

795

796

Appendix D Public Policy Consideration Study

797

798

To be completed In Q5

799

800 **Revision History**

Version	Date	Comment	Author
Version 0.5	10-31-2018	Version for internal review prior to public review and comment	R Schellberg
Version 1.0	12-28-2018	Version for Stakeholder Review	R Schellberg

801